Plant Molecular Biology

, Volume 34, Issue 6, pp 913–922 | Cite as

Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation

  • Allan Wenck
  • Mihály Czakó
  • Ivan Kanevski
  • László Márton


When Agrobacterium was used to transform Nicotiana plumbaginifolia protoplasts and Arabidopsis thaliana roots and seedlings, a large number of plants were found in which not only the T-region defined by the border repeat sequences but the entire binary vector was integrated, as determined by both PCR and Southern analysis techniques. N. plumbaginifolia protoplast co-cultivation experiments yielded 3 out of 5 transformants with collinear sequence past the left border. In Arabidopsis root transformation experiments, 33% (6/18) of the transformants had T-DNA which exceeded the left border repeat. Vacuum infiltration of Arabidopsis seedlings produced even a greater percentage of transformants with sequences outside the left border repeat (62%, 39/63). The long transfer DNA cosegregated with the T-region encoded hygromycin resistance in the T2 progeny eliminating the possibility that long transfer DNA was of extrachromosomal or Agrobacterium origin. The high frequency of long transfer after vacuum infiltration of A. thaliana needs to be considered when analyzing T-DNA tagged mutants.

Agrobacterium tumefaciens Arabidopsis thaliana Nicotiana plumbaginifolia root transformation T-DNA transfer vacuum infiltration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An G, Ebert PR, Mitra A, Ha SB: Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, pp. A3/1-A3/19. Kluwer Academic Publishers, Dordrecht, the Netherlands (1987).Google Scholar
  2. 2.
    An G, Watson BD, Stachel S, Gordon MP, Nester EW: New cloning vehicles for transformation of higher plants. EMBO J 4: 4277-4284 (1985).Google Scholar
  3. 3.
    Bechtold N, Bouchez D: In planta Agrobacterium-mediated transformation of adult Arabidopsis thalianaplants by vacuum infiltration. In: Potrykus I, Spangenberg G (eds) Gene Transfer to Plants, pp. 19-23. Springer-Verlag, Heidelberg (1994).Google Scholar
  4. 4.
    Bechtold N, Ellis J, Pelletier G: In planta Agrobacteriummediated gene transfer by infiltration of adult Arabidopsis thalianaplants. C R Acad Sci Paris, Life Sci 316: 1194-1199 (1993).Google Scholar
  5. 5.
    Bevan M: Agrobacteriumvectors for plant transformation. Nucl Acids Res 22: 8711-8721 (1984).Google Scholar
  6. 6.
    Bouchez D, Camilleri C, Caboche M: A binary vector based on Basta resistance for in plantatransformation of Arabidopsis thaliana. C R Acad Sci Paris, Life Sci 316: 1188-1193 (1993).Google Scholar
  7. 7.
    Bundock P, dan Dulk-Ras A, Beijersberger A, Hooykaas PJJ: Trans-kingdom T-DNA transfer from Agrobacterium tumefaciensto Saccharomyces cerevisiae. EMBO J 14: 3206-3214 (1995).PubMedGoogle Scholar
  8. 8.
    Caplan AB, Van Montagu M, Schell J: Genetic analysis of integration mediated by single T-DNA borders. J Bact 161: 655-664 (1985).PubMedGoogle Scholar
  9. 9.
    Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG: Stable genetic transformation of Arabidopsis thalianaby Agrobacteriuminoculation in planta. Plant J 5: 551-558 (1994).CrossRefGoogle Scholar
  10. 10.
    Chen DF, Dale PJ, Heslop-Harrison JS, Snape JW, Harwood W, Beam S, Mullineaux PM: Stability of transgenes and the presence of N6 methyladenine DNA in transformed wheat cells. Plant J 5: 429-436 (1994).Google Scholar
  11. 11.
    Czakó M, Kanevski IF, Márton L: ‘Long transfer’: frequent integration of the entire binary vector as one fragment in Nicotianaduring Agrobacterium-mediated gene transfer (abstract 799). Plant Physiol 108S: 152 (1995).Google Scholar
  12. 12.
    Czakó M, Wilson J, Yu X, Márton L: Sustained root culture for generation and vegetative propagation of transgenic Arabidopsis thaliana. Plant Cell Rep 12: 603-606 (1993).CrossRefGoogle Scholar
  13. 13.
    De Vos G, DeBeuckeleer M, Van Montagu M, Schell J: Restriction endonuclease mapping of the octopine tumour-inducing plasmid pTi Ach5 of Agrobacterium tumefaciens. Plasmid 6: 249-253 (1981).PubMedGoogle Scholar
  14. 14.
    Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments for high specific activity. Anal Biochem 132: 6-13 (1983).PubMedGoogle Scholar
  15. 15.
    Feldmann KA, Marks MD: Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208: 1-9 (1987).CrossRefGoogle Scholar
  16. 16.
    Gallie DR, Novack S, Kado CI: Novel high-and low-copy stable cosmids for use in Agrobacteriumand Rhizobium. Plasmid 14: 171-175 (1985).PubMedGoogle Scholar
  17. 17.
    Gheysen G, Herman L, Breyne P, Van Montagu M, Depicker A: Agrobacterium tumefaciensas a tool for the genetic transformation of plants. In: Butler LO, Harwood C, Moseley BEB (eds) Genetic Transformation and Expression, pp. 151-174. Intercept, Andover (1989).Google Scholar
  18. 18.
    Gheysen G, Van Montagu M, Zambryski P: Integration of Agrobacterium tumefacienstransfer DNA (T-DNA) involves rearrangements of target plant sequences. Proc Natl Acad Sci USA 84: 6159-6173 (1987).Google Scholar
  19. 19.
    Gheysen G, Villarroel R, Van Montagu M: Illegitimate recombination in plants: amodel for T-DNA integration. Genes Devel 5: 287-297 (1991).PubMedGoogle Scholar
  20. 20.
    Grevelding C, Fantes V, Demper E, Schell J, Masterson R: Single copy T-DNA insertions in Arabidopsisare the predominant form of integration in root-derived transgenics, whereas, multiple insertions are found in leaf discs. Plant Mol Biol 23: 847-860 (1993).PubMedGoogle Scholar
  21. 21.
    Hajdukiewicz P, Svab Z, Maliga P: The small versatile pPZP family of Agrobacteriumbinary vec tors for plant transformation. Plant Mol Biol 25: 981-994 (1994).Google Scholar
  22. 22.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciensTi plasmid. Nature 303: 179-180 (1983).Google Scholar
  23. 23.
    Holsters M, Villarroel R, Gielen J, Seurinck J, DeGreve H, Van Montagu M, Schell J: An analysis of the boundaries of the octopine TL-DNA in tumors induced by Agrobacterium tumefaciens. Mol Gen Genet 190: 35-41 (1983).CrossRefGoogle Scholar
  24. 24.
    Hooykaas PJJ, Schilperoort RA: Agrobacteriumand plant genetic engineering. Plant Mol Biol 19: 15-38 (1992).PubMedGoogle Scholar
  25. 25.
    Horsch RB, Klee HJ: Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNA borders in the transfer process. Proc Natl Acad Sci USA 83: 4428-4432 (1986).Google Scholar
  26. 26.
    Jen GC, Chilton M-D: Activity of T-DNA borders in plant cell transformation by mini-T plasmids. J Bact 166: 491-499 (1986).PubMedGoogle Scholar
  27. 27.
    Joos H, Timmerman B, Van Montagu M, Schell J: Genetic analysis of transfer and stabilization of AgrobacteriumDNA in plant cells. EMBO J 2: 2151-2160 (1983).Google Scholar
  28. 28.
    Jouanin L, Bouchez D, Drong RF, Tepfer D, Slightom JL: Analysis of TR-DNA/plant junctions in the genome of a Convolvulus arvensisclone transformed by Agrobacterium rhizogenesstrain A4. Plant Mol Biol 12: 75-85 (1989).CrossRefGoogle Scholar
  29. 29.
    Katavic V, Hauhn GW, Reed D, Martin M, Kurst L: In plantatransformation of Arabidopsis thaliana. Mol Gen Genet 245: 363-370 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    Koncz Cs, Martini N, Szabados L, Hrouda M, Bachmair A, Schell J: Specialized vectors for gene tagging and expression studies. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, 2nd ed., pp. B2/1-B2/22. Kluwer Academic Publishers, Dordrecht, the Netherlands (1994).Google Scholar
  31. 31.
    Koncz Cs, Schell J: The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacteriumbinary vector. Mol Gen Genet 204: 383-396 (1986).CrossRefGoogle Scholar
  32. 32.
    Martineau B, Voelder TA, Sanders RA: On defining T-DNA. Plant Cell 6: 1032-1033 (1994).CrossRefPubMedGoogle Scholar
  33. 33.
    Márton L, Browse J: Facile transformation of Arabidopsis. Plant Cell Rep 10: 235-239 (1991).CrossRefGoogle Scholar
  34. 34.
    Márton L, Hrouda M, Pécsváradi A, Czakó M: T-DNA-insertindependent mutations induced in transformed plant cells during Agrobacteriumco-cultivation. Transgen Res 3: 317-325 (1994).Google Scholar
  35. 35.
    Márton L, Wullems GJ, Molendijk L, Schilperoort RA: In vitro transformation of cultured cells from Nicotiana tabacumby Agrobacterium tumefaciens. Nature 277: 129-131 (1979).Google Scholar
  36. 36.
    Mayerhofer R, Koncz-Kálmán Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Rédei GP, Schell J, Hohn B, Koncz Cs: T-DNA integration: a model of illegitimate recombination in plants. EMBO J 10: 697-704 (1991).PubMedGoogle Scholar
  37. 37.
    Miranda A, Janssen G, Hodges L, Peralta EG, Ream W: Agrobacterium tumefacienstransfers extremely long T-DNAs by a unidirectional mechanism. J Bact 174: 2288-2297 (1992).PubMedGoogle Scholar
  38. 38.
    Ooms G, Bakker A, Molendijk L, Wullems GJ, Gordon MP, Nester EW, Schilperoort RA: T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30: 589-597 (1982).CrossRefPubMedGoogle Scholar
  39. 39.
    Raleigh EA, Trimarchi R, Revel H: Genetic and physical mapping of the mcrA(rglA) and mcrB(rglB) loci of Escherichia coliK-12. Genetics 122: 279-296 (1989).PubMedGoogle Scholar
  40. 40.
    Ramanathan V, Veluthambi K: Transfer of non-T-DNA portions of the Agrobacterium tumefaciensTi plasmid pTi A6 from the left terminus of TL-DNA. Plant Mol Biol 28: 1149- 1154 (1995).PubMedGoogle Scholar
  41. 41.
    Ramanathan V, Veluthambi K: Analysis of octopine left borderdirected DNA transfer from Agrobacteriumto plants. J Biosci 21: 45-56 (1996).Google Scholar
  42. 42.
    Ream W: Agrobacterium tumefaciensand interkingdom genetic exchange. Annu Rev Phytopath 27: 583-618 (1989).CrossRefGoogle Scholar
  43. 43.
    Rogers SO, Bendich AJ: Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, pp. A6/1-A6/10. Kluwer Academic Publishers, Dordrecht, the Netherlands (1988).Google Scholar
  44. 44.
    Rogowsky PM, Powell BS, Shirasu K, Lim T-S, Morel P, Zyprian EM, Steck TR, Kado CI: Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63 kbp regulon cloned as a single unit. Plasmid 23: 85-106 (1990).PubMedGoogle Scholar
  45. 45.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  46. 46.
    Schmidhauser TJ, Helinski DR: Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of Gram-negative bacteria. J Bact 164: 446-455 (1985).PubMedGoogle Scholar
  47. 47.
    Sheikholeslam S, Lim B-C, Kado CI: Multiple-size plasmids in Agrobacterium radiobacterand A. tumefaciens. Phytopathology 69: 54-58 (1979).Google Scholar
  48. 48.
    Simpson RB, O'Hara PJ, Kwok W, Montoya AL, Lichtenstein C, Gordon MP, Nester EW: DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with plant DNA. Cell 29: 1005-1014 (1982).CrossRefPubMedGoogle Scholar
  49. 49.
    Slightom JL, Jouanin L, Leach F, Drong RF, Tepfer D: Isolation and identification of TL-DNA/plant junctions in Convolvulus arvensistransformed by Agrobacterium rhizogenesstrain A4. EMBO J 4, 3069-3077 (1985).Google Scholar
  50. 50.
    Stachel SE, Timmerman B, Zambryski P: Activation of Agrobacterium tumefaciens virgene expression generates multiple single stranded T-strand molecules from pTiA6 T-region: requirement for 5′ virD gene products. EMBO J 6: 857-863 (1987).PubMedGoogle Scholar
  51. 51.
    Tinland B, Schoumacker F, Gloedkler V, Bravo-Angel AM, Hohn B: The Agrobacterium tumefaciensvirulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14: 3585-3595 (1995).PubMedGoogle Scholar
  52. 52.
    van der Graaff E, den Dulk-Ras A, Hooykaas PJJ: Deviating TDNAtransfer from Agrobacterium tumefaciensto plants. Plant Mol Biol 31: 677-681 (1996).PubMedGoogle Scholar
  53. 53.
    van Haaren MJJ, Sedee NJA, de Boer HA, Schilperoort RA, Hooykaas PJJ: Mutational analysis of the conserveddomains of a T-region border repeat of Agrobacterium tumefaciens. Plant Mol Biol 13: 523-531 (1989).PubMedGoogle Scholar
  54. 54.
    van Haaren MJJ, Sedee NJA, Krul M, Schilperoort RA, Hooykaas PJJ: Function of heterologous and pseudo border repeats in T region transfer via the octopine virulence system of Agrobacterium tumefaciens. Plant Mol Biol 11: 773-781 (1988).Google Scholar
  55. 55.
    Veluthambi K, Ream W, Gelvin SB: Virulence genes, borders and overdrive generate single-stranded T-DNAmolecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bact 170: 1523-1532 (1988).PubMedGoogle Scholar
  56. 56.
    Virts EL, Gelvin SB: Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciensto petunia protoplasts. J Bact 162: 1030-1038 (1985).PubMedGoogle Scholar
  57. 57.
    Wang K, Genetello C, Van Montagu M, Zambryski PC: Sequence context of the T-DNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 210: 338-346 (1987).Google Scholar
  58. 58.
    Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Grahem MW: Quantitative evaluation of Escherichia colihost strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucl Acid Res 17: 3469-3478 (1989).Google Scholar
  59. 59.
    Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Van Montagu M, Goodman HM: Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385-1391 (1980).PubMedGoogle Scholar
  60. 60.
    Zupan JR, Zambryski P: Transfer of T-DNA from Agrobacteriumto the plant cell. Plant Physiol 107: 1041-1047 (1995).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Allan Wenck
    • 1
  • Mihály Czakó
    • 1
  • Ivan Kanevski
    • 1
  • László Márton
    • 1
  1. 1.Department of BiologyUniversity of South CarolinaColumbiaUSA
  2. 2.Forest Biotechnology Group, Dept. of ForestryNorth Carolina State UniversityRaleighUSA
  3. 3.Biomedical ConsultingPiscatawayUSA

Personalised recommendations