Plant Molecular Biology

, Volume 35, Issue 6, pp 723–734 | Cite as

Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis sp. PCC 6803

  • Mario García-Domínguez
  • Francisco J. Florencio


The glnB gene from Synechocystis sp. PCC 6803 that encodes the PII protein has been cloned by heterologous hybridization using the corresponding glnB gene from Synechococcus sp. PCC 7942. An ORF of 336 nucleotides appeared that potentially coded for a protein of 112 amino acid residues (Mr 12397). The deduced amino acid sequence revealed a high identity (higher than 80%) with its cyanobacterial counterparts and a basal level of identity (close to 60%) with other PII proteins. A single mRNA of about 680 nucleotides was found under all growth conditions studied. glnB gene expression was specifically activated under nitrogen deprivation (a 10-fold increase respect to nitrogen-replete conditions). No differences in glnB mRNA levels were observed when using nitrate or ammonium as nitrogen sources. Amount of glnB mRNA decreased to undetectable levels when transferring cells to the dark, but effect was avoided by adding glucose to the culture medium. Primer extension analysis and band-shift assays indicated that expression of the glnB gene, elevated under nitrogen deprivation, might lie under the control of the nitrogen transcriptional regulator NtcA, although constitutive levels of expression were also detected from a σ70-dependent Escherichia coli-like promoter.

cyanobacteria glnB gene light regulation nitrogen regulation PII protein Synechocystis sp. PCC 6803 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).Google Scholar
  2. 2.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. Greene/Wiley-Interscience, New York (1992).Google Scholar
  3. 3.
    Bradford MM: A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).Google Scholar
  4. 4.
    Cai Y, Wolk CP: Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bact 172: 3138–3145 (1990).Google Scholar
  5. 5.
    de Zamaroczy M, Paquelin FA, Elmerich C: Functional organization of the glnB-glnA cluster in Azospirillum brasilense. J Bact 175: 2507–2515 (1993).Google Scholar
  6. 6.
    Florencio FJ, Chávez S, Muro-Pastor MI, Reyes JC, Marqués S, Mérida A, Candau P: Interaction between photosynthesis and nitrogen assimilation enzymes in cyanobacteria. In: Barber J, Guerrero MG, Medrano H (eds) Trends in Photosynthesis Research, pp. 231–240. Intercept, Andover, UK (1992).Google Scholar
  7. 7.
    Flores E, Schmetterer G: Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. PCC 6803. J Bact 166: 693–696 (1986).Google Scholar
  8. 8.
    Forchhammer K, Tandeau de Marsac N: The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bact 176: 84–91 (1994).Google Scholar
  9. 9.
    Forchhammer K, Tandeau de Marsac N: Functional analysis of the PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bact 177: 2033–2040 (1995).Google Scholar
  10. 10.
    Forchhammer K, Tandeau de Marsac N: Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J Bact 177: 5812–5817 (1995).Google Scholar
  11. 11.
    Foster-Hartnett D, Kranz RG: The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN-independent promoters. J Bact 176: 5171–5176 (1994).Google Scholar
  12. 12.
    Goodman HJK, Woods DR: Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J Gen Microbiol 139: 1487–1493 (1993).Google Scholar
  13. 13.
    Hill RT, Parker JR, Goodman HJK, Jones DT, Woods DR: Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol 135: 3271– 3279 (1989).Google Scholar
  14. 14.
    Jaggi R, Ybarlucea W, Cheah E, Carr PD, Edwards KJ, Ollis DL, Vasudevan SG: The role of the T-loop of the signal transducing protein PII from Escherichia coli. FEBS Lett 391: 223–228 (1996).Google Scholar
  15. 15.
    Kolb A, Busby S, Buc H, Garges S, Adhya S: Transcriptional regulation by cAMP and its receptor protein. Annu Rev Bio chem. 62: 749–795 (1993).Google Scholar
  16. 16.
    Laemmli UK: Cleaving of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680– 685 (1970).Google Scholar
  17. 17.
    Luque I, Flores E, Herrero A: Molecular mechanisms for the operation of nitrogen control in cyanobacteria. EMBO J 13: 2862–2869 (1994).Google Scholar
  18. 18.
    MacKinney G: Absorption of light by chlorophyll solution. J Biol Chem 140: 315–322 (1941).Google Scholar
  19. 19.
    Marqués S, Mérida A, Candau P, Florencio FJ: Light-mediated regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechococcus sp. PCC 6301. Planta 187: 247–253 (1992).Google Scholar
  20. 20.
    Martin GB, Thomashow MF, Chelm BK: Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J Bact 171: 5638–5645 (1989).Google Scholar
  21. 21.
    Meeks JC, Wolk CP, Lockau W, Schilling N, Shaffer PW, Chien WS: Pathways of assimilation of [13N]N2 and 13NH4+ by cyanobacteria with and without heterocysts. J Bact 134: 125–130 (1978).Google Scholar
  22. 22.
    Meissner PS, Sisk WP, Berman ML: Bacteriophage 1 cloning system for the construction of directional cDNA libraries. Proc Natl Acad Sci USA 84: 4171 (1987).Google Scholar
  23. 23.
    Mérida A, Candau P, Florencio FJ: Regulation of glutamine synthetase activty in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bact 173: 4095–4100 (1991).Google Scholar
  24. 24.
    Merrick MJ, Edwards RA: Nitrogen control in bacteria. Microbiol Rev 59: 604–622 (1995).Google Scholar
  25. 25.
    Muro-Pastor MI, Florencio FJ: Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203: 99–105 (1992).Google Scholar
  26. 26.
    Muro-Pastor MI, Reyes JC, Florencio FJ: The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. J Bact 178: 4070–4076 (1996).Google Scholar
  27. 27.
    Pakrasi HB, Williams JGK, Arntzen CJ: Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J 7: 325–332 (1988).Google Scholar
  28. 28.
    Ramasubramanian TS, Wei T-F, Golden J W: Two Anabaena sp. strain PCC7120DNA-binding factors interact with vegetative cell-and heterocyst-specific genes. J Bact 176: 1214–1223 (1994).Google Scholar
  29. 29.
    Reitzer LJ: Ammonia assimilation and the biosynthesis of glutamine, glutamate aspartate, asparagine, L-alanine, and Dalanine. In: Neidhardt FC, Curtiss R, Demund CCL, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger E (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol 1, 2nd ed, pp. 391–407. American Society for Microbiology, Washington, DC (1996).Google Scholar
  30. 30.
    Reyes JC, Crespo JL, García-Domínguez M, Florencio FJ: Electron transport controls glutamine synthetase activity in the facultative heterotrophic cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 109: 899–905 (1995).Google Scholar
  31. 31.
    Reyes JC, Florencio FJ: A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bact 176: 1260–1267 (1994).Google Scholar
  32. 32.
    Reyes JC, Florencio FJ: A novel mechanism of glutamine synthetase inactivation by ammonium in the cyanobacteriumSynechocystis sp. PCC6803. Involvement of an inactivating protein. FEBS Lett 367: 45–48 (1995).Google Scholar
  33. 33.
    Reyes JC, Florencio FJ: Electron transport controls transcription of the glutamine synthetase gene (glnA) from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 27: 789–799 (1995).Google Scholar
  34. 34.
    Reyes JC, Muro-Pastor MI, Florencio FJ: Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J Bact 179: 2678–2689 (1997).Google Scholar
  35. 35.
    Rich PR, Madgwick SA, Moss DA: The interactions of duroquinol, DBMIB and NQNO with the chloroplast cytochrome bf complex. Biochim Biophys Acta 108: 1188–1195 (1991).Google Scholar
  36. 36.
    Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY: Generic assignment, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61 (1979).Google Scholar
  37. 37.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  38. 38.
    Sanger F, Nicklen S, Coulson AR: DNAsequencingwith chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).Google Scholar
  39. 39.
    Southern JA, Parker JR, Woods DR: Novel structure properties and inactivation of glutamine synthetase cloned from Bacteroides fragilis. J Gen Microbiol 133: 2437–2446 (1987).Google Scholar
  40. 40.
    Stanier RY, Cohen-Bazire G: Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31: 225–274 (1977).Google Scholar
  41. 41.
    Trebst, A: Inhibitors in the electron flow. Meth Enzymol 69: 675–715 (1980).Google Scholar
  42. 42.
    Tsironemas NF, Castets AM, Harrison MA, Allen JF, Tandeau de Marsac N: Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci USA 88: 4565–4569 (1991).Google Scholar
  43. 43.
    van Heeswijk WC, Hoving S, Molenaar D, Stegeman B, Kahn D, Westerhoff HV: An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 21: 133–146 (1996).Google Scholar
  44. 44.
    van Heeswijk WC, Stegeman B, Hoving S, Molenaar D, Kahn D, Westerhoff HV: An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade. FEMS Microbiol Lett 132: 153–157 (1995).Google Scholar
  45. 45.
    Vega-Palas M, Flores E, Herrero A: NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859 (1992).Google Scholar
  46. 46.
    Vioque A: Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. Nucl Acids Res 20: 6331– 6337 (1992).Google Scholar
  47. 47.
    Wei T-F, Ramasubramanian TS, Pu F, Golden JW: Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection. J Bact 175: 4025–4035 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mario García-Domínguez
    • 1
  • Francisco J. Florencio
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisUniversidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la CartujaSevillaSpain

Personalised recommendations