Acta Applicandae Mathematica

, Volume 50, Issue 1–2, pp 177–190 | Cite as

Isorepresentations of the Lie-Isotopic SU(2) Algebra with Applications to Nuclear Physics and to Local Realism

  • Ruggero Maria Santilli


In this note, we study the nonlinear-nonlocal-noncanonical, axiom-preserving isotopies/Q-operator deformations SÛQ(2) of the SU(2) spin-isospin symmetry. We prove the local isomorphism SÛQ(2)≈SU(2), construct and classify the isorepresentations of SÛQ(2), identify the emerging generalizations of Pauli matrices, and show their lack of unitary equivalence to the conventional representations. The theory is applied for the reconstruction of the exact SU(2)-isospin symmetry in nuclear physics with equal p and n masses in isospaces. We also prove that Bell's inequality and the von Neumann theorem are inapplicable under isotopies, thus permitting the isotopic completion/Q-operator deformation of quantum mechanics studied in this note which is considerably along the celebrated argument by Einstein, Podolsky and Rosen.

isotopies isorepresentations Lie-isotopic algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biedenharn, L. C. and Louck, J.D.: Angular Momentum in Quantum Physics, Addison-Wesley, Reading, MA, 1981.Google Scholar
  2. 2.
    Blatt, J. M. and Weiskopf, V. F.: Theoretical Nuclear Physics, Wiley, New York, 1963.Google Scholar
  3. 3.
    Bohm, D.: Quantum Theory, Dover, New Haven, 1989.Google Scholar
  4. 4.
    Brink, D. M. and Satchler, G. R.: Angular Momentum, Clarendom Press, Oxford, 1968.Google Scholar
  5. 5.
    Curtright, T. L., Fairlie, D. B. and Zachos, Z. K. (eds): Quantum Groups, World Scientific, Singapore, 1991.Google Scholar
  6. 6.
    Eder, G.: Nuclear Forces, MIT Press, Cambridge, MA, 1968.Google Scholar
  7. 7.
    Home, D. and Selleri, F.: Bell's theorem and the EPR paradox, Riv. Nuovo Cim. 14(9) (1991).Google Scholar
  8. 8.
    Kadeisvili, J. V.: Elements of the Lie-Santilli theory, Acta Appl. Math., to appear.Google Scholar
  9. 9.
    Lopez, D. F.: in Proc. Internat. Workshop on Symmetry Methods in Physics, JINR, Dubna, 1993.Google Scholar
  10. 10.
    Santilli, R. M.: On a possible Lie-admissible covering of the Galilei relativity in Newtonian mechanics for nonconservative and Galilei noninvariant systems, Hadronic J. 1 (1978), 223-423; Addendum, Ibid. 1 (1978), 1279-1342.Google Scholar
  11. 11.
    Santilli, R. M.: Isonumbers and genonumbers of dimension 1, 2, 4, 8, their isoduals and pseudoisoduals, and 'hidden numbers' of dimension 3, 5, 6, 7, Algebras, Groups Geom. 10 (1993), 273-322.Google Scholar
  12. 12.
    Santilli, R. M.: Isodual spaces and antiparticles, Comm. Theor. Phys. 3, 153 (1994).Google Scholar
  13. 13.
    Santilli, R. M.: in Proc. Third Wigner Symposium, Oxford University, to appear.Google Scholar
  14. 14.
    Santilli, R. M.: Foundations of Theoretical Mechanics, Vol. I: The Inverse Problem in Newtonian Mechanics (1978), Vol. II: Birkhoffian Generalization of Hamiltonian Mechanics (1982), Springer-Verlag, Heidelberg, New York.Google Scholar
  15. 15.
    Santilli, R. M.: Isotopic Generalization of Galilei's and Einstein's Relativities, Vol. I: Mathematical Foundations, Vol. II: Classical Isotopies, 2nd edn, Academy of Sciences of Ukraine, Kiev, 1994.Google Scholar
  16. 16.
    Santilli, R. M.: Elements of Hadronic Mechanics, Vols. I and II, 2nd edn., Ukraine Academy of Sciences, Kiev, 1995; Relatinistic Hadronic Mechanics, Found. Phys. 27 (1997), 625-740.Google Scholar
  17. 17.
    Smirnov, Yu. F. and Asherova, R. M. (eds): Proceedings of the Fifth Workshop Symmetry Methods in Physics, JINR, 1992.Google Scholar
  18. 18.
    Sourlas, D. S. and Tsagas, G. T.: Mathematical Foundations of the Lie-Santilli Theory, Academy of Sciences of Ukraine, Kiev, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Ruggero Maria Santilli
    • 1
  1. 1.The Institute for Basic ResearchPalm HarborU.S.A

Personalised recommendations