Plant Molecular Biology

, Volume 34, Issue 3, pp 417–426 | Cite as

An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence

  • Roland Schubert
  • Regina Fischer
  • Rüdiger Hain
  • Peter H. Schreier
  • Günther Bahnweg
  • Dieter Ernst
  • Heinrich Sandermann Jr


Stilbene synthase (STS) is an enzyme involved in the biosynthesis of stilbenes, which are synthesized in various plants in response to pathogen attack, UV irradiation or exposure to ozone. We describe analysis of an ozone inducible STS transcript and its corresponding promoter (Vst1), combined with the β-glucuronidase (GUS) reporter gene. A single ozone pulse (0.1 µl/l, 10 h) resulted in 11-fold GUS expression. Histochemical localization of GUS activity revealed small spots distributed over the whole leaf. Cross-sections of leaf tissue showed that the Vst1 promoter was induced in palisade and spongy parenchyma cells and to a lesser extent in epidermal cells. Deletions at the 5′ end showed that a partial promoter sequence between position − 430 and− 280 constituted the ozone-responsive region, whereas for effective pathogen-inducibility sequences from− 280 to −140 have been shown to be necessary.

gene regulation ozone promoter resveratrol synthase stilbene synthase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72: 248-254 (1976).CrossRefPubMedGoogle Scholar
  2. 2.
    Castresana C, de Carvalho F, Gheysen G, Habets M, Inzé D, Van Montagu M: Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifoliaβ-1,3-glucanase gene. Plant Cell 2: 1131-1143 (1990).CrossRefPubMedGoogle Scholar
  3. 3.
    Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11: 113-116 (1993).Google Scholar
  4. 4.
    Conklin PL, Last RL: Differential accumulation of antioxidant mRNAs in Arabidopsis thalianaexposed to ozone. Plant Physiol 109: 203-212 (1995).CrossRefPubMedGoogle Scholar
  5. 5.
    Dolferus R, Jacobs M, Peacock WJ, Dennis ES: Differential interactions of promoter elements in stress responses of the Arabidopsis Adhgene. Plant Physiol 105: 1075-1087 (1994).CrossRefPubMedGoogle Scholar
  6. 6.
    Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H: Biochemical plants responses to ozone. IV. Cross-induction of defensive pathways in parsley (Petroselinum crispumL.) plants. Plant Physiol 104: 67-74 (1994).PubMedGoogle Scholar
  7. 7.
    Eckey-Kaltenbach H, Kiefer E, Grosskopf E, Ernst D, Sandermann H: Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Mol Biol 33: 343-350 (1997).CrossRefPubMedGoogle Scholar
  8. 8.
    Ernst D, Schraudner M, Langebartels C, Sandermann H: Ozone-induced changes of mRNA levels of β-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Mol Biol 20: 673-682 (1992).PubMedGoogle Scholar
  9. 9.
    Ernst D, Bodemann A, Schmelzer E, Langebartels C, Sandermann H: β-1,3-Glucanase mRNA is locally, but not systemically induced in Nicotiana tabacumL. cv. Bel W3 after ozone fumigation. J Plant Physiol 148: 215-221 (1996).Google Scholar
  10. 10.
    Eyal Y, Meller Y, Lev-Yadun S, Fluhr R: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4: 225-234 (1993).CrossRefPubMedGoogle Scholar
  11. 11.
    Fischer R: Optimierung der heterologen Expression von Stilbensynthasegenen für den Pflanzenschutz. Dissertation, Universit ät Hohenheim (1994).Google Scholar
  12. 12.
    Fliegmann J, Schröder G, Schanz S, Britsch L, Schröder J: Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18: 489-503 (1992).PubMedGoogle Scholar
  13. 13.
    Franken P, Niesbach-Klösgen U, Weydemann U, Maréchal-Drouard L, Saedler H, Wienand U: The duplicated chalcone synthase genes C2and Whp(white pollen) of Zea maysare independently regulated; evidence for translational control of Whpexpression by the anthocyanin intensifying gene. EMBO J 10: 2605-2612 (1991).PubMedGoogle Scholar
  14. 14.
    Fritzemeier K-H, Kindl H: Coordinate induction byUVlight of stilbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151: 48-52 (1981).Google Scholar
  15. 15.
    Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R: Expression of a stilbene synthase gene in Nicotiana tabacumresults in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15: 325-335 (1990).PubMedGoogle Scholar
  16. 16.
    Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K: Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156 (1993).CrossRefPubMedGoogle Scholar
  17. 17.
    Hart JH: Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopathol 19: 437-458 (1981).CrossRefGoogle Scholar
  18. 18.
    Heagle AS: Ozone and crop yield. Annu Rev Phytopath 27: 397-423 (1989).Google Scholar
  19. 19.
    Heath RL: Alterations of plant metabolism by ozone exposure. In: Alscher RG, Wellburn AR (eds) Plant Responses to the Gaseous Environment, pp. 121-145. Chapman & Hall, London (1994).Google Scholar
  20. 20.
    Horsch RB, Fry JE, Hoffman NL, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229-1231 (1985).Google Scholar
  21. 21.
    Jefferson RA: Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387-405 (1987).Google Scholar
  22. 22.
    Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R: Plant defence systems induced by ozone. Plant Cell Environ 17: 783-794 (1994).Google Scholar
  23. 23.
    Koncz C, Schell J: The promoter of TL-DNA gene 5 controls the tissue specific expression of chimaeric genes carried by a novel type of Agrobacteriumbinary vector. Mol Gen Genet 204: 383-396 (1986).CrossRefGoogle Scholar
  24. 24.
    Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körger H, Redei GP, Schell J: High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467-8471 (1989).PubMedGoogle Scholar
  25. 25.
    Krupa SV, Grünhage L, Nosal H-J, Manning WJ, Legge AH, Hanewald K: Ambient ozone (O3) and adverse crop response: a unified view of cause and effect. Environ Pollut 87: 119-126 (1995).CrossRefPubMedGoogle Scholar
  26. 26.
    Laisk A, Kull O, Moldau H: Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90: 1163-1167 (1989).Google Scholar
  27. 27.
    Langcake P: Disease resistance of Vitisspp. and the production of the stress metabolites resveratrol, ε;-viniferin, α-viniferin and pterostilbene. Physiol Plant Path 18: 213-226 (1981).Google Scholar
  28. 28.
    Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H: Biochemical plant responses to ozone: I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95: 882-889 (1991).Google Scholar
  29. 29.
    Lee SW, Heinz R, Robb J, Nazar RN: Differential utilization of alternate initiation sites in a plant defence gene responding to environmental stimuli. Eur J Biochem 226: 109-114 (1994).PubMedGoogle Scholar
  30. 30.
    Leone G, Tonneijk AEG: Acute ozone exposure predispose Phaseolus vulgarisbeans to Botrytis cinerea. Neth J Plant Path 96: 65-74 (1990).Google Scholar
  31. 31.
    Linsmaier EM, Skoog F: Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100-127 (1965).Google Scholar
  32. 32.
    Maliga PS, Breznovitis A, Marton L: Streptomycin-resistant plants from callus culture of haploid tobacco. Nature New Biol 244: 29-30 (1973).PubMedGoogle Scholar
  33. 33.
    Mehlhorn H, Wellburn AR: Stress ethylene formation determines plant sensitivity to ozone. Nature 327: 417-418 (1987).CrossRefGoogle Scholar
  34. 34.
    Melchior F, Kindl H: Coordinate and elicitor-dependent expression of stilbene synthase and phenylalanine ammonialyase genes in Vitiscv. Optima. Arch Biochem Biophys 288: 552-557 (1991).PubMedGoogle Scholar
  35. 35.
    Metz N: Ozon: Ein vielschichtiges Phänomen. BMW AG, München (1995).Google Scholar
  36. 36.
    Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 (1962).Google Scholar
  37. 37.
    Raventós D, Jensen AB, Rask M-B, Casacuberta JM, Mundy J, San Segundo B: A 20 bp cis-element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. Plant J 7: 147-155 (1995).CrossRefPubMedGoogle Scholar
  38. 38.
    Rosemann D, Heller W, Sandermann H: Biochemical plant responses to ozone: II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestrisL.) seedlings. Plant Physiol 97: 1280-1286 (1991).Google Scholar
  39. 39.
    Rushton P, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich I: Interaction of elicitor-inducible DNA-binding proteinswith elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15: 5690-5700 (1996).PubMedGoogle Scholar
  40. 40.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  41. 41.
    Sandermann H: Ozone and plant health. Annu Rev Phythopath 34: 347-366 (1996).CrossRefGoogle Scholar
  42. 42.
    Schlagnhaufer CD, Glick RE, Arteca RN, Pell EJ: Molecular cloning of an ozone-induced 1-aminocyclopropane-1-carboxylate synthase cDNA and its relationship with a loss of rbcSin potato (Solanum tuberosumL.) plants. Plant Mol Biol 28: 93-103 (1995).PubMedGoogle Scholar
  43. 43.
    Schraudner M, Ernst D, Langebartels C, Sandermann H: Biochemical plant responses to ozone. III. Activation of the defence-related proteins β-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99: 1321-1328 (1992).Google Scholar
  44. 44.
    Schröder G, Brown JWS, Schröder J: Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem 172: 161-169 (1988).PubMedGoogle Scholar
  45. 45.
    Sessa G, Meller Y, Fluhr R: A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-1bgene. Plant Mol Biol 28: 145-153 (1995).PubMedGoogle Scholar
  46. 46.
    Sharma YK, Davis KR: Ozone-induced expression of stressrelated genes inArabidopsis thaliana. Plant Physiol 105: 1089- 1096 (1994).PubMedGoogle Scholar
  47. 47.
    Shinshi H, Usami S, Ohme-Tagaki M: Identification of an ethylene-responsive region in the promoter of a tobacco class 1 chitinase gene. Plant Mol Biol 27: 923–932 (1995).PubMedGoogle Scholar
  48. 48.
    Simon R, Pfeifer U, and Pühler A: A broad host range mobilization system for in vivogenetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology 1: 784-790 (1983).CrossRefGoogle Scholar
  49. 49.
    Somssich IE: Regulatory elements governing pathogenesisrelated (PR) gene expression. In: Nover L (ed) Plant Promoters and Transcription Factors, Results and Problems in Cell Differentiation, Vol. 20, pp. 163-179. Springer-Verlag, Berlin (1994).Google Scholar
  50. 50.
    Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C: Cloning andmolecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis viniferaL.). Plant Mol Biol 24: 743-755 (1994).PubMedGoogle Scholar
  51. 51.
    Tingey DT, Standley C, Field RW: Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10: 969- 974 (1976).PubMedGoogle Scholar
  52. 52.
    Vögeli-Lange R, Fründt C, Hart CM, Nagy F, Meins F: Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1,3-glucanase B promoter. Plant Mol Biol 25: 299-311 (1994).PubMedGoogle Scholar
  53. 53.
    Volz A, Kley D: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature 332: 240-242 (1988).CrossRefGoogle Scholar
  54. 54.
    Yalpani N, Enyedi AJ, León J, Raskin I: Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesisrelated proteins and virus resistance in tobacco. Planta 193: 372-376 (1994).CrossRefGoogle Scholar
  55. 55.
    Zinser C: Induktion der Gene der Zimtalkoholdehydrogenase und der Stilbensynthase durch Ozon und UV-B in der Kiefer (Pinus sylvestrisL.). Dissertation, Ludwig-Maximilians-Universität München (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Roland Schubert
    • 1
    • 3
  • Regina Fischer
    • 2
    • 4
  • Rüdiger Hain
    • 2
  • Peter H. Schreier
    • 2
  • Günther Bahnweg
    • 1
  • Dieter Ernst
    • 1
  • Heinrich Sandermann Jr
    • 1
  1. 1.GSF – National Research Center for Environment and HealthInstitute of Biochemical Plant PathologyOberschleissheimGermany
  2. 2.Bayer AG, Landwirtschaftszentrum Monheim, Molecular TargetResearch and BiotechnologyLeverkusenGermany; current address
  3. 3.LMU München, Forstwissenschaftliche FakultätLehrbereich für ForstgenetikFreisingGermany
  4. 4.Maiwald & PartnerEuropean Patent AttorneysMünchenGermany

Personalised recommendations