Acta Applicandae Mathematica

, Volume 50, Issue 1–2, pp 131–165 | Cite as

An Introduction to the Lie–Santilli Theory

  • J. V. Kadeisvili


We review the elements of the nonlinear, nonlocal and noncanonical, axiom-preserving isotopies of Lie's theory introduced by the physicist R. M. Santilli back in 1978 while at the Department of Mathematics of Harvard University. We then study the structure theory of isotopic algebras and groups, and show that the emerging covering of Lie's theory can provide the symmetries for all possible deformations of a given metric directly in the frame of the experimenter (direct universality). We also show that the explicit form of the symmetry transformations can be readily computed from the knowledge of the original symmetry and of the new metric. The theory is illustrated with the isotopies of the rotational, Lorentz and Poincaré symmetries and an outline of their applications.

Santilli's isotopies isospaces isodualities universal enveloping associative algebras Lie algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Animalu, A. O. E.: Application of hadronics mechanics to the theory of pairing in high T c superconductivity, Hadronic J. 14 (1990), 459-500.Google Scholar
  2. 2.
    Aringazin, A. K.: Lie-isotopic Finslerian lifting of the Lorentz group and Blochintsev-Redeilike behaviour of the meason lifetimes, Hadronic J. 12 (1989), 71-74.Google Scholar
  3. 3.
    Aringazin, A. K., Jannussis, A., Lopez, D. F., Nishioka, M., and Veljanoski, B.: Santilli's Lieisotopic Generalization of Galilei's and Einstein's Relativities, Kostarakis Publisher, Athens, Greece, 1991.Google Scholar
  4. 4.
    Bergman, P. G.: Introduction to the Theory of Relativity, Dover, New York, 1942.Google Scholar
  5. 5.
    Borghi, C., Giori, C., and Dall'Olio, A.: Experimental evidence on the emission of neutrons from cold hydrogen plasma, Hadronic J. 15 (1992), 239-252.Google Scholar
  6. 6.
    Cardone, F., Mignani, R., and Santilli, R. M.: On a possible non-Lorentzian energy dependence of the K S° lifetime, J. Phys. G: Nuclear Part. Phys. 18 (1992), L61-L65.Google Scholar
  7. 7.
    Cardone, F., Mignani, R., and Santili, R. M.: Lie-isotopic energy dependence of the K S{ lifetime, J. Phys. G: Nucl. Part. Phys. 18 (1992), L141-L152.Google Scholar
  8. 8.
    Cardone, F. and Mignani, R.: Nonlocal approach to the Bose-Einstein correlation, Univ. of Rome, Preprint no. 894, July 1992.Google Scholar
  9. 9.
    Einstein, A.: Die Feldgleichungen der Gravitation, Preuss. Acad. Wiss., Berlin, Sitzber. (1915), 844-847.Google Scholar
  10. 10.
    Einstein, A.: Kosmologische Betrachtungen zur allgemeinin Relativistätstheorie, Preuss. Acad. Wiss., Berlin Sitzber (1917), 142-152.Google Scholar
  11. 11.
    Gasperini, M.: Elements for a Lie-isotopic gauge theory, Hadronic J. 6 (1983), 935-945.Google Scholar
  12. 12.
    Gasperini, M.: Lie-isotopic lifting of gauge theories, Hadronic J. 6 (1983), 1462-1479.Google Scholar
  13. 13.
    Gilmore, R.: Lie Groups, Lie Algebras and Some of their Representations, Wiley, New York, 1974.Google Scholar
  14. 14.
    Hamilton, W. R. (1834): Collected Works, Cambridge Univ. Press, Cambridge, 1940.Google Scholar
  15. 15.
    Jacobson, N.: Lie Algebras, Interscience, New York, 1962.Google Scholar
  16. 16.
    Jannussis, A.: Noncanonical quantum statistical mechanics, Hadronic J. Suppl. 1 (1985), 576-609.Google Scholar
  17. 17.
    Jannussis, A. and Mignani, R.: Algebraic structure of linear and nonlinear models of open quantum systems, Physica A 152 (1988), 469-476.Google Scholar
  18. 18.
    Jannussis, A. and Tsohantis, I.: Review of recent studies on the Lie-admissible approach to quantum gravity, Hadronic J. 11 (1988), 1-11.Google Scholar
  19. 19.
    Jannussis, A., Miatovic, M., and Veljanoski, B.: Classical examples of Santilli's Lie-isotopic generalization of Galilei's relativity for closed systems with nonselfadjoint internal forces, Physics Essays 4 (1991), 202-211.Google Scholar
  20. 20.
    Jannussis, A., Brodimas, D., and Mignani, R.: Studies in Lie-admissible models, J. Phys. A 24 (1991), L775-L778.Google Scholar
  21. 21.
    Jannussis, A. and Mignani, R.: Lie-admissible perturbation methods for open quantum systems, Physica A 187 (1992), 575-588.Google Scholar
  22. 22.
    Kadeisvili, J. V.: Elements of functional isoanalysis, Algebras, Groups Geom. 9 (1992), 283-318.Google Scholar
  23. 23.
    Kadeisvili, J. V.: Elements of the Fourier-Santilli isotransforms, Algebras, Groups Geom. 9 (1992), 319-342.Google Scholar
  24. 24.
    Kadeisvili, J. V.: Santilli's Lie-isotopic Generalizations of Contemporary Algebras, Geometries and Relativities, 2nd edn, Ukraine Academy of Sciences, Kiev, 1994.Google Scholar
  25. 25.
    Kadeisvili, J. V.: An introduction to the Lie-Santilli theory, in G. Pogosyan et al. (eds), Proceedings of the International Workshop on Symmetry Methods in Physics, JINR, Dubna, 1994.Google Scholar
  26. 26.
    Kadeisvili, J. V., Kamiya, N., and Santilli, R. M.: A characterization of isofields and their isoduals, Hadronic J. 16 (1993), 168-185.Google Scholar
  27. 27.
    Klimyk, A. U. and Santilli, R. M.: Standard isorepresentations of isotopic/Q-operator deformations of Lie algebras, Algebras, Groups Geom. 10 (1993), 323-333.Google Scholar
  28. 28.
    Ktorides, C. N., Myung, H. C. and Santilli, R. M.: On the recently proposed test of Pauli principle under strong interactions, Phys. Rev. D 22 (1980), 892-907.Google Scholar
  29. 29.
    Lagrange, J. L., Méchanique Analytique, reprinted by Gauthier-Villars, Paris, 1940.Google Scholar
  30. 30.
    Lie, S.: Geometrie der Beruhrungstransformationen, Teubner, Leipzig, 1896.Google Scholar
  31. 31.
    Lôhmus, J., Paal, E., and Sorgsepp, L.: Nonassociative Algebras in Physics, Hadronic Press (1994).Google Scholar
  32. 32.
    Lopez, D. F.: Confirmation of Logunov's relativistic gravitation via Santilli's iso-Riemannian geometry, Hadronic J. 15 (1992), 431-439.Google Scholar
  33. 33.
    Lopez, D. F.: Problematic aspects of q-deformations and their isotopic resolutions, Hadronic J. 16 (1993), 429-457.Google Scholar
  34. 34.
    Lorentz, H. A., Einstein, A., Minkowski, H., and Weyl, H.: The Principle of Relativity: A Collection of Original Memoirs, Methuen, London, 1923.Google Scholar
  35. 35.
    Mignani, R.: Lie-isotopic lifting of SU N symmetries, Lett. Nuovo Cimento 39 (1984), 413-416.Google Scholar
  36. 36.
    Mignani, R.: Nonpotential scattering for the density matrix and quantum gravity, Univ. of Rome, Report No. 688, 1989.Google Scholar
  37. 37.
    Mignani, R.: Quasars' redshift in iso-Minkowski space, Physics Essays 5 (1992), 531–539.Google Scholar
  38. 38.
    Møller, C.: Theory of Relativity, Oxford University Press, Oxford, 1972.Google Scholar
  39. 39.
    Myung, H. C. and Santilli, R. M.: Modular-isotopic Hilbert space formulation of the exterior strong problem, Hadronic J. 5 (1982), 1277-1366.Google Scholar
  40. 40.
    Nishioka, M.: An introduction to gauge fields by the Lie-isotopic lifting of the Hilbert space, Lett. Nuovo Cimento 40 (1984), 309-312.Google Scholar
  41. 41.
    Nishioka, M.: Extension of the Dirac-Myung-Santilli delta function to field theory, Lett. Nuovo Cimento 39 (1984), 369-372.Google Scholar
  42. 42.
    Nishioka, M.: Remarks on the Lie algebras appearing in the Lie-isotopic lifting of gauge theories, Nuovo Cimento 85 (1985), 331-336.Google Scholar
  43. 43.
    Nishioka, M.: Noncanonical, commutation relations and the Jacobi identity, Hadronic J. 11 (1988), 143-146.Google Scholar
  44. 44.
    Pauli, W.: Theory of Relativity, Pergamon Press, London, 1958.Google Scholar
  45. 45.
    Poincaré, H.: Sur la dynamique de l'electron, C. R. Acad. Sci. Paris, 140 (1905), 1504-1508.Google Scholar
  46. 46.
    Riemann, B.: Gesammelte mathematische Weerke und wissenschaftlicher Nachlass, Leipzig, 1882, reprinted by Dover, New York, 1953.Google Scholar
  47. 47.
    Santilli, R. M.: On a possible Lie-admissible covering of the Galilei relativity in Newtonian mechanics for nonconservative and Galilei noninvariant systems, Hadronic J. 1 (1978), 223-423; Addendum, Ibidem 1 (1978), 1279-1342.Google Scholar
  48. 48.
    Santilli, R. M.: Need for subjecting to an experimental verification the validity within a hadron of Einstein's special relativity and Pauli's exclusion principle, Hadronic J. 1 (1978), 574-902.Google Scholar
  49. 49.
    Santilli, R. M.: Foundations of Theoretical Mechanics, Vol. I: The Inverse Problem in Newtonian Mechanics (1978), Vol. II: Birkhoffian Generalization of Hamiltonian Mechanics (1982) and Vol. III: Isotopic Generalization of Quantum Mechanics (in preparation), Springer-Verlag, Heidelberg, New York, 1983.Google Scholar
  50. 50.
    Santilli, R. M.:Isotopic breaking of Gauge symmetries, Phys. Rev. D20 (1979), 555-570.Google Scholar
  51. 51.
    Santilli, R. M.: Lie-isotopic lifting of the special relativity for extended-deformable particles, Lett. Nuovo Cimento 37 (1983), 545-555.Google Scholar
  52. 52.
    Santilli, R. M.: Lie-isotopic lifting of Lie symmetries, I: General considerations, Hadronic J. 8 (1985), 25-35.Google Scholar
  53. 53.
    Santilli, R. M.: Lie-isotopic lifting of Lie symmetries, II: Lifting of rotations, Hadronic J. 8 (1985), 36-51.Google Scholar
  54. 54.
    Santilli, R. M.: A journey toward physical truth, in Proceedings of the International Conference on Quantum Statistics and Foundational Problems of Quantum Mechanics, Hadronic J. Suppl. 1 (1985), 662-685.Google Scholar
  55. 55.
    Santilli, R. M.: Apparent consistency of Rutherford's hypothesis of the neutron as a compressed hydrogen atom, Hadronic J. 13 (1990), 513-532.Google Scholar
  56. 56.
    Santilli, R. M.: Isotopies of contemporary mathematical structures, I: Isotopies of fields, vector spaces, transformation theory, Lie algebras, analytic mechanics and space-time symmetries, Algebras, Groups Geom. 8 (1991), 266.Google Scholar
  57. 57.
    Santilli, R. M.: Isotopies of contemporary mathematical structures, II: Isotopies of symplectic geometry, affine geometry, Riemannian geometry and Einstein gravitation, Algebras, Groups Geom. 8 (1991), 275-390.Google Scholar
  58. 58.
    Santilli, R. M.: Nonlocal formulation of the Bose-Einstein correlation within the context of hadronic mechanics, Hadronic J. 15 (1992), 1-15 and 79-134.Google Scholar
  59. 59.
    Santilli, R. M.: Isonumbers and genonumbers of dimension 1, 2, 4, 8, their isoduals and pseudoisoduals and “hidden numbers” of dimension 3, 5, 6, 7, Algebras, Groups Geom. 10 (1993), 273-322.Google Scholar
  60. 60.
    Santilli, R. M.: Nonlocal-integral, axiom-preserving isotopies and isodualities of the Riemannian geometry, in H. M. Srivastava and Th. M. Rassias (eds), Analysis, Geometry and Groups: A Riemann Legacy Volume, Hadronic Press, Palm Harbor, FL, 1993.Google Scholar
  61. 61.
    Santilli, R. M.: Elements of Hadronic Mechanics, Vol. I: Mathematical Foundation (1993), Vol. II: Theoretical Foundations (1994), Vol. III: Experimental Verifications (in preparation), Academy of Sciences of Ukraine, Kiev.Google Scholar
  62. 62.
    Santilli, R. M.: Isotopic Generalization of Galilei's and Einstein's Relativities, Vol I: Mathematical Foundations, Vol. II: Classical Isotopies, 2nd edn, Academy of Sciences of Ukraine, Kiev, 1994.Google Scholar
  63. 63.
    Santilli, R. M.: Isorepresentations of the isotopic SU(2) algebra with applications to nuclear physics, Acta Appl. Math., to appear.Google Scholar
  64. 64.
    Santilli, R. M.: Isodual spaces and antiparticles, Comm. Theor. Phys., to appear.Google Scholar
  65. 65.
    Santilli, R. M.: Classical determinism as isotopic limit of Heisenberg's uncertainties for gravitational singularities, Comm. Theor. Phys., to appear.Google Scholar
  66. 66.
    Santilli, R. M.: Nonlinear, nonlocal, noncanonical, axiom-preserving isotopies of the Poincaré symmetry, in Proceedings of the Workshop on Secrets of Quantum Intuition, J. Moscow Phys. Soc., to appear.Google Scholar
  67. 67.
    Santilli, R. M.: Iso-Minkowskian representation of quasars redshifts and blueshifts, in F. Selleri and M. Barone (eds), Fundamental Questions in Quantum Physics and Relativity, Plenum, New York, 1994.Google Scholar
  68. 68.
    Santilli, R. M.: Foundations of the isoquark theory, in Proceedings of the International Conference on High Energy Physics, IHEP, Protvino, to appear.Google Scholar
  69. 69.
    Santilli, R. M.: Isotopies of Dirac equation and its application to neutron interferometric experiments, in Proceedings of International Conference Deuteron 1993, JINR, Dubna, 1993.Google Scholar
  70. 70.
    Santilli, R. M.: Application of isosymmetries/Q-operator deformations to the cold fusion of elementary particles, in G. Pogosyan et al. (eds), Proceedings of the International Conference on Symmetry Methods in Physics, JINR, Dubna, Russia, 1993.Google Scholar
  71. 71.
    Santilli, R. M.: Recent experimental and theoretical evidence on the cold fusion of elementary particles, JINR Communication ER4-93-352, 1993.Google Scholar
  72. 72.
    Schwartzchild, K.: Über das Gravitationesfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzber. Akad. Wiss., Berlin. Kl. Math.-Phys. Tech. (1916), 189-196.Google Scholar
  73. 73.
    Schwartzchild, K.: Über das Gravitationensfeld einer Kugel aus inkompresassibler Flussigtet nach der Einsteinschen Theorie, Sitzber. Akad. Wiss., Berlin. Kl. Math.-Phys. Tech. (1916), 424-434.Google Scholar
  74. 74.
    Sourlas, D. S. and Tsagas, G. T.: Mathematical Foundations of the Lie-Santilli Theory, Ukraine Academy of Sciences, Kiev, 1993.Google Scholar
  75. 75.
    Vilenkin, N. Ya. and Klimyk, A. U.: Representation of Lie Groups and Special Functions, Vols. I, II, III and IV, Kluwer Acad. Publ., Dordrecht, 1993.Google Scholar
  76. 76.
    Weiss, G. F.: Scientific, Ethical and Accountability Problems in Einstein's Gravitation, Andromeda, Bologna, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. V. Kadeisvili
    • 1
  1. 1.International Center of PhysicsInstitute of Nuclear PhysicsAlma-Ata

Personalised recommendations