Advertisement

Environmental Monitoring and Assessment

, Volume 49, Issue 2–3, pp 235–249 | Cite as

Influences of Climatic Change on Some Ecological Processes of an Insect Outbreak System in Canada's Boreal Forests and the Implications for Biodiversity

  • Richard A. Fleming
  • Jean-Noël Candau
Article

Abstract

Insect outbreaks are a major disturbance factor in Canadian forests. If global warming occurs, the disturbance patterns caused by insects may change substantially, especially for those insects whose distributions depend largely on climate. In addition, the likelihood of wildfire often increases after insect attack, so the unpredictability of future insect disturbance patterns adds to the general uncertainty of fire regimes. The rates of processes fundamental to energy, nutrient, and biogeochemical cycling are also affected by insect disturbance, and through these effects, potential changes in disturbance patterns indirectly influence biodiversity. A process-level perspective is advanced to describe how the major insect outbreak system in Canadian forests, that of the spruce budworm (Choristoneura fumiferana Clem. [Lepidoptera: Tortricidae]), might react to global warming. The resulting scenarios highlight the possible importance of natural selection, extreme weather, phenological relationships, complex feedbacks, historical conditions, and threshold behavior. That global warming already seems to be affecting the lifecycles of some insects points to the timeliness of this discussion. Some implications of this process-level perspective for managing the effects of global warming on biodiversity are discussed. The value of process-level understanding and high-resolution, long-term monitoring in attacking such problems is emphasized. It is argued that a species-level, preservationist approach may have unwanted side-effects, be cost-ineffective, and ecologically unsustainable.

biodiversity boreal forest Choristoneura fumiferana climate change disturbance insect outbreaks spruce budworm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, P. J., Clearley C., Hanson F. and Parisella, S.: 1982, Feeding responses of eastern spruce budworm larvae to sucrose and other carbohydrates, J. Chem. Ecol. 8, 233–239.Google Scholar
  2. Antonovsky, M. Y., Fleming R. A., Kuznetsov Y. A. and Clark, W. C.: 1990, Forest-pest interaction dynamics: the simplest mathematical models, Theor. Popul. Biol. 37, 343–367.Google Scholar
  3. Ayres, M. P. and Scriber, J. M.: 1994, Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae), Ecological Monographs 64, 465–482.Google Scholar
  4. Blais, J. R.: 1981, Recurrence of spruce budworm outbreaks for the past two hundred years in western Québec, Forestry Chronicle 57, 273–275.Google Scholar
  5. Bryant, J. P., Chapin, F. S. III and Klein, D. R.: 1983, Carbon nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos 40, 357–368.Google Scholar
  6. Cerezke, H. F. and Volney, W. J.A.: 1995, Forest Insect Pests in the Northwest Region, in: Armstrong, J. A. and Ives, W. G.H. (eds.), Forest insect pests in Canada, Canadian Forest Service, Ottawa, pp. 59–72.Google Scholar
  7. Davis, M. B.: 1981, Quaternary History and the Stability of Forest Communities, in: West, D. C., Shugart, H. H. and Botkin, D. B. (eds.), Forest Succession: Concepts and Applications, Springer, New York, pp. 132–153.Google Scholar
  8. Elias, S. A.: 1991, Insects and climate change, Bioscience 41, 552–559.Google Scholar
  9. Farrow, R. A.: 1991, Implications of potential global warming on agricultural pests in Australia, EPPO Bulletin 21, 683–696.Google Scholar
  10. Fleming, R. A.: 1996, A mechanistic perspective of possible influences of climate change on defoliating insects in North America's boreal forests, Silva Fennica 30, 281–294.Google Scholar
  11. Fleming, R. A. and Shoemaker, C. A. S.: 1992, Evaluating models for spruce budworm-forest management: Comparing output with regional field data, Ecological Applications 2, 460–477.Google Scholar
  12. Fleming, R. A. and Tatchell, G. M.: 1994, Long Term Trends in Aphid Flight Phenology Consistent with Global Warming: Methods and some preliminary results, in: Leather, S. R., Watt, A. D., Mills, N. J. and Walters, K. A. F. (eds.), Individuals, Populations and Patterns in Ecology, Intercept, Andover, Hants, UK, pp. 63–71.Google Scholar
  13. Fleming, R. A. and Volney, W. J. A.: 1995, Effects of climate change on insect defoliator population processes in Canada's boreal forest: some plausible scenarios, Water, Air, and Soil Pollution 82, 445–454.Google Scholar
  14. Hall, J. P. and Moody, B. H. (compilers): 1994, Forest Depletions Caused by Insects and Diseases in Canada 1982–1987, Information Report ST-X-8, Canadian Forest Service, Ottawa, 14 p.Google Scholar
  15. Hardy, Y. J., Lafond, A. and Hamel, L.: 1983, The epidemiology of the current spruce budworm outbreak in Quebec, Forest Science 29, 715–725.Google Scholar
  16. Harvey, G. T.: 1974, Nutritional studies of eastern spruce budworm (Lepidoptera: Tortricidae). I. Soluble sugars, Can. Ent. 106, 353–365.Google Scholar
  17. Harvey, G. T.: 1983a, A geographic cline in egg weights in Choristoneura fumiferana (Lepidoptera: Tortricidae) and its significance in population dynamics, Can. Ent. 115, 1103–1108.Google Scholar
  18. Harvey, G. T.: 1983b, Environmental and genetic effects on mean egg weight in spruce budworm (Lepidoptera: Tortricidae), Can. Ent. 115, 1109–1117.Google Scholar
  19. Harvey, G. T.: 1985, Egg weight as a factor in the overwintering survival of spruce budworm (Lepidoptera: Tortricidae) larvae, Can. Ent. 117, 1451–1461.Google Scholar
  20. Hassell, M. P., Godfray, H. C. J. and Comins, H. N.: 1993, Effects of Global Change on the Dynamics of Insect Host–parasitoid Interactions, in: Kareiva, P. M., Kingsolver, J. G., and Huey, R. B. (eds.), Biotic Interactions and Global Change, Sinauer Associates Inc., Sunderland, MA, pp. 402–423.Google Scholar
  21. Hengeveld, H.: 1990, Theories on Species Responses to Variable Climates, in: Boer, M. M. and de Groot, R. S. (eds.), Landscape-Ecological Impact of Climate Change, IOS Press, Amsterdam, pp. 274–289.Google Scholar
  22. Hengeveld, H.: 1995, Understanding Atmospheric Change: A Survey of the Background Science and Implications of Climate Change and Ozone Depletion – second edition, SOE Report 95–2, Atmospheric Environment Service, Environment Canada, Ottawa, 68 p.Google Scholar
  23. Holling, C. S.: 1973, Resilience and stability of ecological systems, Ann. Rev. Ecology and Systematics 4, 1–23.Google Scholar
  24. Holling, C. S.: 1992a, Cross–scale morphology, geometry, and dynamics of ecosystems, Ecological Monographs 62, 447–502.Google Scholar
  25. Holling, C. S.: 1992b, The Role of Forest Insects in Structuring the Boreal Landscape, in: Shugart, H. H., Leemans, R. and Bonan, G. B. (eds.), Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, U.K, 545 p.Google Scholar
  26. Holling, C. S., Schindler, D. W., Walker, B.W. and Roughgarden, J.: 1995, Biodiversity in the Functioning of Ecosystems: An Ecological Synthesis, in: Perrings, C., Maler, K., Folke, C., Holling, C. S. and Jansson, B. (eds.), Biodiversity Loss: Economic and Ecological Issues, Cambridge Univ. Press, Cambridge U.K., pp. 44–83.Google Scholar
  27. Hudes, E. S. and Shoemaker, C. A.: 1988, Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae), Environ. Entomol. 17, 97–108.Google Scholar
  28. Huston, M. A.: 1994, Biological diversity: The coexistence of species on changing landscapes, Cambridge Univ. Press, Cambridge U.K., 681p.Google Scholar
  29. IPCC: 1996, Second Assessment Report, Intergovernmental Panel on Climate Change, 3 volumes, Cambridge University Press, Cambridge, UK.Google Scholar
  30. Kingsolver, J. G.: 1989, Weather and the population dynamics of insects: integrating physiological and population ecology, Physiol. Zool. 62, 314–334.Google Scholar
  31. Korzukhin, M. D., Ter-Mikaelian, M. T. and Wagner, R. G.: 1996, Process versus empirical models: which approach for forest ecosystem management?, Can. J. For. Res. 26, 879–887.Google Scholar
  32. Langner, L. L. and Flather, C. H.: 1994, Biological Diversity: Status and Trends in the United States, USDA For. Serv., Gen. Tech. Rep., RM-244, 24 p.Google Scholar
  33. Larsson, S.: 1989, Stressful times for the plant stress – insect performance hypothesis, Oikos 56, 277–283.Google Scholar
  34. Lautenschlager, R. A.: 1995, Biodiversity Conservation Research Needs (Obstacles to biodiversity research), Forest Research Information Paper No. 129, Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, 25 p.Google Scholar
  35. Lautenschlager, R. A.: 1996, Identify the specifics: A biopolitical approach for establishing research priorities, J. For. 94, 31–34.Google Scholar
  36. Lucuik, G. S.: 1984, Effect of climatic factors on post-diapause emergence and survival of spruce budworm (Choristoneura fumiferana) larvae (Lepidoptera: Tortricidae), Can. Ent. 116, 1077–1084.Google Scholar
  37. Lysyk, T. J.: 1989, Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir, J. Econ. Entomol. 82, 1161–1168.Google Scholar
  38. MacLean, D. A.: 1985, Effects of Spruce Budworm Outbreaks on Forest Growth and Yield, in: Sanders, C. J., Stark, R. W., Mullins, E. J. and Murphy, J. (eds.), Recent Advances in Spruce Budworm Research, Canadian Forest Service, Ottawa, pp. 148–174.Google Scholar
  39. Mattson, W. J. and Haack, R. A.: 1987, The role of drought in outbreaks of plant-eating insects, BioScience 37, 110–118.Google Scholar
  40. Mattson, W. J., Slocum, S. S. and Koller, C. N.: 1983, Spruce Budworm Performance in Relation to Foliar Chemistry of its Host Plants, USDA For. Serv., Gen. Tech. Rep. NE85, 55–56.Google Scholar
  41. Morris, R. F. (ed.): 1963, The dynamics of epidemic spruce budworm populations, Memoirs of the Entomological Society of Canada 31, 1–332.Google Scholar
  42. Nealis, V. G. and Fraser, S.: 1988, Rate of development, reproduction, and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae) under controlled conditions, Can. Ent. 120, 197–204.Google Scholar
  43. Niemelä, P. and Mattson, W. J.: 1996, Invasion of North American forests by European phytophagous insects: Legacy of the European crucible? Bioscience 46, 741–753.Google Scholar
  44. Noss, R. F.: 1990, Indicators for monitoring biodiversity: a hierarchical approach, Cons. Biol. 4, 355–364.Google Scholar
  45. Paine, R. T.: 1980, Food webs: linkage interaction strength and community infrastructure, J. Animal Ecol. 49, 667–685.Google Scholar
  46. Perry, D. A., Amaranthus, M. P., Borchers, J. G., Borchers, S. L. and Brainerd, R. E.: 1989, Bootstrapping in ecosystems, BioScience 39, 230–237.Google Scholar
  47. Perry, D. A., Borchers, J. G., Borchers, S. L. and Amaranthus, M. P.: 1990, Species migrations and ecosystem stability during climate change: the belowground connection, Cons. Biol. 4, 266–274.Google Scholar
  48. Perry, D. F. and Fleming, R. A.: 1988, The timing of Erynia radicans resting spore germination in relation to mycosis of Choristoneura fumiferana, Can. J. Bot. 67, 1657–1663.Google Scholar
  49. Porter, J. H., Parry, M. L. and Carter, T. R.: 1991, The potential effects of climatic change on agricultural insect pests, Agricultural and Forest Meteorology 57, 221–240.Google Scholar
  50. Price, P. W.: 1987, The Role of Natural Enemies in Insect Populations, in: Barbosa, P. and Schultz, J. (eds.), Insect Outbreaks, Academic Press, New York, pp. 241–268.Google Scholar
  51. Régnière, J. and You, M.: 1991, A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce, Ecol. Modelling 54, 277–297.Google Scholar
  52. Rizzo, B. and Wicken, E.: 1992, Assessing the sensitivity of Canada's ecosystems to climatic change, Climate Change 21, 37–56.Google Scholar
  53. Royama, T.: 1992, Analytical Population Dynamics, Routledge, Chapman, and Hall Inc., New York, 371p.Google Scholar
  54. Sager, R. and Ryan, F.J.: 1961, Cell heredity, John Wiley and Sons Inc., New York, 411p.Google Scholar
  55. Sanders, C. J.: 1991, Biology of North American Spruce Budworms, in: van der Geest, L.P.S. and Evenhuis, H.H. (eds.), Tortricid Pests, their Biology, Natural Enemies and Control, Elsevier, Amsterdam, pp. 579–620.Google Scholar
  56. Sanders, C. J., Wallace, D. R. and Lucuik, G. S.: 1978, Flight activity of female eastern spruce budworm (Lepidoptera: Tortricidae) at constant temperatures in the laboratory, Can. Ent. 107, 1289–1299.Google Scholar
  57. Sargeant, N. E.: 1988, Redistribution of the Canadian boreal forest under a warmed climate, Climatol. Bull. 22, 23–34.Google Scholar
  58. Scott, J. M., Ables, E. D., Edwards, T. C. Jr, Eng, R. L., Gavin, T. A., Harris, L. D., Haufler, J. B., Healy, W. M., Knopf, F. L., Torgerson, O. and Weeks, H. P. Jr: 1995, Conservation of biological diversity: Perspectives and the future for the wildlife profession, Wildl. Soc. Bull. 23, 646–657.Google Scholar
  59. Sedinger, J. S. and Flint, P. L.: 1991, Growth rate is negatively correlated with hatch date in black brant, Ecology 72, 496–502.Google Scholar
  60. Shaw, G. G. and Little, C. H. A.: 1977, Natural variation in balsam fir foliar components of dietary importance to spruce budworm, Can. J. For. Res. 7, 47–53.Google Scholar
  61. Sims, R. A., Kershaw, H. M. and Wickware, G. M.: 1990, The Autecology of Major Tree Species in the North Central Region of Ontario, Ontario Ministry of Natural Resources, Northwestern Ontario Forest Technology Development Unit, OMNR Publication 5310. OMNR, Thunder Bay.Google Scholar
  62. Solomon, A. M. and Leemans, R.: 1990, Climatic Change and Landscape Ecological Response: Issues and Analysis, in: Boer, M.M. and de Groot, R.S. (eds.), Landscape-ecological Impact of Climatic Change, IOS Press, Amsterdam, pp. 293–316.Google Scholar
  63. Stedinger, J. R.: 1984, Aspruce budworm-forest model and its implications for suppression programs, Forest Science 30, 597–615.Google Scholar
  64. Stocks, B. J.: 1987, Fire potential in the spruce budworm-damaged forests of Ontario, Forestry Chronicle 63, 8–14.Google Scholar
  65. Sutherst, R. W., Maywald, G. F. and Skarratt, D. B.: 1995, Predicting Insect Distributions in a Changing Climate, in: Harrington, R. and Stork, N.E. (eds.), Insects in a Changing Environment, Academic Press, London, pp. 479–482.Google Scholar
  66. Szujecki, A.: 1987, Ecology of Forest Insects, Junk, Boston, 600 p.Google Scholar
  67. Taylor, F. and Spalding, J. B.: 1986, Geographical Patterns in the Photoperiodic Induction of Hibernal Diapause, in: Taylor, F. and Karban, R. (eds.), The Evolution of Insect Life Cycles, Springer-Verlag, New York, pp. 66–85.Google Scholar
  68. Thompson, I. D., Flannigan, M. D., Wotton, M. and Suffling, R.: 1998, The effects of climate change on landscape diversity: an example in Ontario forests, Envir. Mon. and Ass. 49, nos. 2–3, 213–233.Google Scholar
  69. VanWagner, C. E.: 1978, Age-class distribution and the forest fire cycle, Can. J. For. Res. 8, 220–227.Google Scholar
  70. Volney, W. J. A. and Cerezke, H. F.: 1992, The phenology of white spruce and the spruce budworm in northern Alberta, Can. J. For. Res. 22, 198–205.Google Scholar
  71. Wein, R. W.: 1990, The Importance of Wildfire to Climate Change – Hypotheses for the Taiga, in: Goldammer, J. G. and Jenkins, M. J. (eds.), Fire in Ecosystem Dynamics, Academic Press, The Hague, The Netherlands, pp. 185–190.Google Scholar
  72. Wellington, W. G.: 1948, The light reactions of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), Can. Ent. 80, 56–82.Google Scholar
  73. White, T. C. R.: 1994, The Inadequate Environment: Nitrogen and the Abundance of Animals, Springer-Verlag, New York, 444 p.Google Scholar
  74. Wilson, G. F.: 1974, The effects of temperature and UV radiation on the infection of Choristoneura fumiferana and Malacosoma pluviale by a microsporidian parasite, Nosema (Perzia) fumiferanae (Thom.), Can. J. Zool. 52, 59–63.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Richard A. Fleming
    • 1
  • Jean-Noël Candau
    • 1
  1. 1.Great Lakes Forest Research Centre, Canadian Forest Service, Sault SteMarieCANADA

Personalised recommendations