The International Journal of Cardiac Imaging

, Volume 13, Issue 4, pp 337–346 | Cite as

An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images

  • Guido Germano
  • Paul B. Kavanagh
  • Daniel S. Berman

Abstract

We have developed a software suite that automatically selects, analyses, quantitates and displays all the key image data in a myocardial perfusion SPECT study. Methods: The files automatically selected (upon specification of the patient name) are rest and stress projections, rest and stress short axis and gated short axis files, and all ‘snapshot’ files. The projection data sets are presented in cine mode for evaluation of patient motion, while the lung/heart ratio at rest and stress is calculated from regions of interest (ROIs) that are automatically derived and overlayed on the LAO 45 images. Left ventricular (LV) cavity volumes at rest and stress are calculated from the short axis data sets, and the related transient ischemic dilation (TID) ratio derived and displayed. Quantitative measurements of global (ejection fraction) and regional function parameters are performed from the gated short axis dataset. All algorithms use the C++, X-Windows and OSF-Motif standards. The overall suite executes in less than 1 minute on a SunSPARC5 with 32 Mb of RAM and no proprietary hardware. Results: The software was validated on 144 patients (118 rest201 Tl/post-stress 99mTc-sestamibi, 18 post-stress 99mTc-sestamibi, 8 rest 201Tl) acquired on a 90° dual detector (ADAC Vertex, 91 patients) and a triple detector camera (Picker Prism 3000, 53 patients). Overall, the individual algorithms for the analysis of projection, short axis and gated short axis images were successful in 622/660 (94.2%) of the images. In 80.5% of the patients (73/91+43/53) all algorithms executed successfully, without significant difference in success rates for201 Tl versus 99mTc-sestamibi images. Conclusion: Our automated approach to myocardial perfusion SPECT analysis and review is highly successful, intrinsically reproducible, and can produce time and cost savings while improving accuracy in a clinical or teleradiology-type environment.

gated myocardial perfusion SPECT automatic quantification regional wall motion and thickening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Germano G, Van Train K, Kiat H, Berman D. Digital techniques for the acquisition, processing, and analysis of nuclear cardiology images. In: Sandler MP (eds). Diagnostic nuclear medicine. Baltimore: Williams & Wilkins, 1995, 347-386.Google Scholar
  2. 2.
    Germano G, Kavanagh PB, Chen J, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995; 36(11): 2127-32.Google Scholar
  3. 3.
    Cauvin JC, Boire JY, Maublant JC, Bonny JM, Zanca M, Veyre A. Automatic detection of the left ventricular myocardium long axis and center in thallium-201 single photon emission computed tomography. Eur J Nucl Med 1992; 19(12): 1032-7.Google Scholar
  4. 4.
    Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm [see comments]. J Nucl Med 1995; 36(6): 1115-22.Google Scholar
  5. 5.
    Garcia EV, Van Train K, Maddahi J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985; 26(1): 17-26.Google Scholar
  6. 6.
    Germano G, Van Train K, Garcia E, et al. Quantitation of myocardial perfusion with SPECT: current issues and future trends. In: Zaret BL, Beller G (eds). Nuclear cardiology: state of the art and futur directions. St. Louis, Mosby, 1993, 77-88.Google Scholar
  7. 7.
    Van Train KF, Areeda J, Garcia EV, et al. Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993; 34(9): 1494-502.Google Scholar
  8. 8.
    Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day reststress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994; 35(4): 609-18.Google Scholar
  9. 9.
    Verani MS, Jeroudi MO, Mahmarian JJ, et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxyisobutyl isonitrile. J Am Coll Cardiol 1988; 12(6): 1573-81.Google Scholar
  10. 10.
    Tamaki S, Nakajima H, Murakami T, et al. Estimation of infarct size by myocardial emission computed tomography with thallium-201 and its relation to creatine kinase-MB release after myocardial infarction in man. Circulation 1982; 66(5): 994-1001.Google Scholar
  11. 11.
    O'Connor MK, Hammell T, Gibbons RJ. In vitro validation of a simple tomographic technique for estimation of percentage myocardium at risk using methoxyisobutyl isonitrile technetium 99m (sestamibi). Eur J Nucl Med 1990; 17(1–2): 69-76.Google Scholar
  12. 12.
    Benoit T, Vivegnis D, Foulon J, Rigo P. Quantitative evaluation of myocardial single-photon emission tomographic imaging: application to the measurement of perfusion defect size and severity. Eur J Nucl Med 1996; 23(12): 1603-12.Google Scholar
  13. 13.
    Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucle Med 1995; 36(11): 2138-47.Google Scholar
  14. 14.
    Germano G, Kiat H, Moriel M, et al. Quantitative, automatic measurement of left ventricular ejection fraction by gated SPECT: development and preliminary validation. Clin Nucl Med 1993 (abstract); 18(10): 924.Google Scholar
  15. 15.
    Mazzanti M, Germano G, Kiat H, Friedman J, Berman D. Fast Tc-99m sestamibi gated single-photon emission computed tomography for evaluation of myocardial function. J Nucl Cardiol 1996; 3(2): 143-9.Google Scholar
  16. 16.
    Germano G, Erel J, Kiat H, Kavanagh P, Berman D. Quantitative LVEF and qualitative regional function from gated 201-T1 perfusion SPECT: validation with gated 99m Tc-sestamibi SPECT. J Nucl Med 1997 (in press); 38.Google Scholar
  17. 17.
    Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images. Comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 1996; 27(1): 173-81.Google Scholar
  18. 18.
    DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993; 34(11): 1871-6.Google Scholar
  19. 19.
    Faber TL, Akers MS, Peshock RM, Corbett JR. Threedimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 1991; 32(12): 2311-7.Google Scholar
  20. 20.
    Everaert H, Franken PR, Flamen P, Goris M, Momen A, Bossuyt A. Left ventricular ejection fractin from gated SPECT myocardial perfusion studies: a method based on the radial distribution of count rate density across the myocardial wall. Eur J Nucl Med 1996; 23(12): 1628-33.Google Scholar
  21. 21.
    Nichols K, DePuey E, Rozanksi A. Autmoation of gated tomographic left ventricular ejection fraction. J Nucl Cardiol 1996; 3 (6(1)): 475-82.Google Scholar
  22. 22.
    Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI. Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med 1994; 35(7): 1185-92.Google Scholar
  23. 23.
    Bingham JB, McKusick KA, Strauss HW, Boucher CA, Pohost GM. Influence of coronary artery disease on pulmonary uptake of thallium-201. Am J Cardiol 1980; 46(5): 821-6.Google Scholar
  24. 24.
    Gibson RS, Watson DD, Carabello BA, Holt ND, Beller GA. Clinical implications of increased lung uptake of thallium-201 during exercise scintigraphy 2 weeks after myocardial infarction. Am J Cardiol 1982; 49(7): 1586-93.Google Scholar
  25. 25.
    Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987; 317(24): 1486-9.Google Scholar
  26. 26.
    Iskandrian AS, Heo J, Nguyen T, Lyons E, Paugh E. Left ventricular dilatation and pulmonary thallium uptake after singlephoton emission computer tomography using thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol 1990; 66(10): 807-11.Google Scholar
  27. 27.
    Mahmood S, Buscombe JR, Ell PJ. The use of thallium-201 lung/heart ratios. Eur J Nucl Med 1992; 19(9): 807-14.Google Scholar
  28. 28.
    Saha M, Farrand T, Brown K. Lung uptake of technetium 99m sestamibi: relation to clinical, exercise, hemodynamic, and left ventricular function variables. J Nucl Cardiol 1994; 1(1): 52-6.Google Scholar
  29. 29.
    Giubbini R, Campini R, Milan E, et al. Evaluation of technetium-99m-sestamibi lung uptake: correlation with left ventricular function. J Nucl Med 1995; 36(1): 58-63.Google Scholar
  30. 30.
    Parker JA, Yester MV, Daube-Witherspoon E, Todd-Pokropek AE, Royal HJ. Procedure guideline for general imaging: 1.0 Society of Nuclear Medicine. J Nucl Med 1996; 37(12): 2087-92.Google Scholar
  31. 31.
    Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987; 9(4): 752-9.Google Scholar
  32. 32.
    Chouraqui P, Rodrigues EA, Berman DS, Maddahi J. Significance of dipyridamole-induced transient dilation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol 1990; 66(7): 689-94.Google Scholar
  33. 33.
    Lette J, Lapointe J, Waters D, Cerino M, Picard M, Gagnon A. Transient left ventricular cavitary dilation during dipyridamole-thallium imaging as an indicator of severe coronary artery disease. Am J Cardiol 1990; 66(17): 1163-70.Google Scholar
  34. 34.
    Stolzenberg J. Dilatation of left ventricular cavity on stress thallium scan as an indicator of ischemic disease. Clin Nucl Med 1980; 5(7): 289-91.Google Scholar
  35. 35.
    Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996; 27(7): 1612-20.Google Scholar
  36. 36.
    Glantz S. Primer of Biostatistics Ed. III, New York: McGrawHill; 1992: Pages.Google Scholar
  37. 37.
    Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dualisotope myocardial perfusion single-photon emission computed tomography: a clinical validatin study. J Am Coll Cardiol 1993; 22(5): 1455-64.Google Scholar
  38. 38.
    Kiat H, Germano G, Friedman J, et al. Comparative feasibility of separate or simultaneous rest thallium-201/stress technetium-99m-sestamibi dual-isotope myocardial perfusion SPECT. J Nucl Med 1994; 35(4): 542-8.Google Scholar
  39. 39.
    Todd-Pokropek A, Cradduck TD, Deconinck F. A file format for the exchange of nuclear medicine image data: a specification of Interfile version 3.3. Nucl Med Commun 1992; 13(9): 673-99.Google Scholar
  40. 40.
    Bidgood WD Jr, Horii SC. Introduction to the ACR-NEMA DICOM standard. Radiographics 1992; 12(2): 345-55.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Guido Germano
    • 1
    • 2
  • Paul B. Kavanagh
    • 1
  • Daniel S. Berman
    • 3
    • 4
    • 5
  1. 1.Division of Medical Physics and Imaging, Department of MedicineCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.The Department of Radiological SciencesUCLA School of MedicineLos AngelesUSA
  3. 3.Division of Nuclear Medicine, Department of ImagingCedars-Sinai Medical CenterLos AngelesUSA
  4. 4.Division of Cardiology, Department of MedicineCedars-Sinai Medical CenterLos AngelesUSA
  5. 5.Department of MedicineUCLA School of MedicineLos AngelesUSA

Personalised recommendations