Plant Molecular Biology

, Volume 34, Issue 5, pp 731–743 | Cite as

Structural analyses of plastid-derived 16S rRNAs in holoparasitic angiosperms

  • Daniel L. Nickrent
  • R. Joel Duff
  • D.A.M. Konings


Higher-order structures have been constructed for plastid-encoded small-subunit (SSU, 16S), rRNAs from representatives of seven nonphotosynthetic holoparasitic angiosperm families: Apodanthaceae, Cynomoriaceae, Cytinaceae, Balanophoraceae, Hydnoraceae, Mitrastemonaceae, and Rafflesiaceae. Whereas most pairwise comparisons among angiosperms differ by 2–3% in substitutions, the 16S rRNAs of the holoparasites show an increasingly greater number of mutations: Cynomorium (7.3%), Cytinus (8.0%), Bdallophyton (12.7%), Mitrastema (14.9%), Hydnora (19.4%), Pilostyles (30.4%) and Corynaea (35.9%). Despite this high level of sequence variation, SSU structures constructed for all species except Pilostyles possess the typical complement of 50 helices (that contain numerous compensatory mutations) thereby providing indirect evidence supporting their functionality. Pilostyles, likely with the most unusual plastid 16S rRNA yet documented, lacks four major helices and contains lengthy insertions for four others. Sequences of products generated via RT-PCR show that these structural modifications are present on a mature (transcribed) rRNA. The trend toward increasing numbers of base substitutions in the holoparasites is accompanied by a marked increase in AA+U content of the rRNA. This ‘A/T drift’ phenomenon of rDNA is especially apparent in Corynaea whose SSU rDNA sequence is 72% A+T. A comparison of Cytinus to tobacco showed that substitution rates appear to be dependent upon the composition of neighboring bases. Transversions represented 26% of the mutations when flanking bases were G or C whereas transversions increased to 36% when the flanking bases were A to T. The underlying molecular mechanism associated with these high substitution rates is presently unknown, however, relaxation of selection pressure on ribosome function resulting in altered DNA replication and/or repair systems may be involved.

nonphotosynthetic plant small-subunit ribosomal RNA structure substitution rate acceleration composition bias 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson SGE, Kurland CG: Genomic evolution drives the evolution of the translational system. Biochem Cell Biol 73: 775-787 (1995).PubMedGoogle Scholar
  2. 2.
    Bruns TD, Szaro TM: Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol Biol Evol 9: 836-855 (1992).PubMedGoogle Scholar
  3. 3.
    dePamphilis CW: Genes and genomes. In: Press MC, Graves JD (eds) Parasitic Plants, pp. 176-205. Chapman and Hall, London (1995).Google Scholar
  4. 4.
    dePamphilis CW, Palmer JD: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337-339 (1990).CrossRefPubMedGoogle Scholar
  5. 5.
    dePamphilis CW, Young ND, Wolfe AD: Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA, in press (1997).Google Scholar
  6. 6.
    Dixon MT, Hillis DM: Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 10: 256-267 (1993).PubMedGoogle Scholar
  7. 7.
    Douglas SE, Turner S: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 266-273 (1991).Google Scholar
  8. 8.
    Duff RJ, Nickrent DL: Characterization of mitochondrial SSU (18S) rDNA from holoparasitic plants. J Mol Evol (submitted).Google Scholar
  9. 9.
    Ehresmann B, Ehresmann C, Romby P, Mougel M, Baudin F, Westhof E, Ebel J-P: Detailed Structures of rRNAs: New Approaches. American Society for Microbiology, Washington, DC (1990).Google Scholar
  10. 10.
    Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD: Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. PlantMol Biol 29: 721-733 (1995).Google Scholar
  11. 11.
    Filipski J, Salinas J, Rodier F: Chromosome localizationdependent compositional bias of point mutations in Alurepetive sequences. J Mol Biol 206: 563-566 (1989).PubMedGoogle Scholar
  12. 12.
    Gilbert DG: SeqApp, version 1.9a157. Biocomputing Office, Biology Dept., Indiana University, Bloomington, IN 47405 (1993).Google Scholar
  13. 13.
    Gutell RR: Collection of small subunit (16S-and 16S-like) ribosomal RNA structures: 1994. Nucl Acids Res 22: 3502- 3507 (1994).PubMedGoogle Scholar
  14. 14.
    Gutell RR: Collection of small subunit (16S-and 16S-like) ribosomal RNA structures. Nucl Acids Res 21: 3051-3054 (1993).PubMedGoogle Scholar
  15. 15.
    Gutell RR:Comparative studies ofRNA: inferring higher-order structure from patterns of sequence variation. Curr Opin Struct Biol 3: 313-322 (1993).Google Scholar
  16. 16.
    Gutell RR, Weiser B, Woese CR, Noller HF: Comparative anatomy of 16S-like ribosomal RNA. Progress Nucl Acids Res Mol Biol 32: 155-216 (1985).Google Scholar
  17. 17.
    Gutell RR, Woese CR: Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proc Natl Acad Sci USA 87: 663-667 (1990).PubMedGoogle Scholar
  18. 18.
    Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Speilmann A, Stutz E: Complete sequence of Euglena gracilischloroplast DNA. Nucl Acids Res 21: 3537-3544 (1993).PubMedGoogle Scholar
  19. 19.
    Hess ST, Blake JD, Blake RD: Wide variations in neighbordependent substitution rates. J Mol Biol 236: 1022-1033 (1994).CrossRefPubMedGoogle Scholar
  20. 20.
    Hill WA, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR: The Ribosome: Structure, Function and Evolution. American Society for Microbiology, Washington, DC (1990).Google Scholar
  21. 21.
    Jaeger JA, Turner DH, Zuker M: Predicting optimal and suboptimal secondary structure for RNA. Meth Enzymol 183: 281-306 (1990).PubMedGoogle Scholar
  22. 22.
    Konings DAM, Gutell RR: A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16Slike rRNAs. RNA 1: 559-574 (1995).PubMedGoogle Scholar
  23. 23.
    Kuijt J: The Biology of Parasitic Flowering Plants. University of California Press, Berkeley, CA (1969).Google Scholar
  24. 24.
    Li W-H, Wu C-I, Luo C-C: Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 21: 58-71 (1984).PubMedGoogle Scholar
  25. 25.
    Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR: The ribosomal database project. Nucl Acids Res 22: 3485-3487 (1994).PubMedGoogle Scholar
  26. 26.
    Manhart J: Chloroplast 16S rDNA sequences and phylogenetic relationships of fern allies and ferns. Am Fern J 85: 182-192 (1995).Google Scholar
  27. 27.
    Mishler BD, Thrall PH, Hopple JSJ, De Luna E, Vilgalys R: A molecular approach to the phylogeny of bryophytes: cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes. Bryologist 95: 172-180 (1992).Google Scholar
  28. 28.
    Morden CW, Delwiche CF, Kuhsel M, Palmer JD: Gene phylogenies and the endosymbiotic origin of plastids. BioSystems 28: 75-90 (1992).CrossRefPubMedGoogle Scholar
  29. 29.
    Morden CW, Wolfe KH, dePamphilis CW, Palmer JD: Plastid translation and transcription genes in a nonphotosynthetic plant: intact, missing and pseudo genes. EMBO J 10: 3281- 3288 (1991).PubMedGoogle Scholar
  30. 30.
    Morton BR: Neighboring base composition and transversion/ transition bias in a comparison of rice and maize chloroplast noncoding regions. Proc Natl Acad Sci USA USA 92: 9717-9721 (1995).PubMedGoogle Scholar
  31. 31.
    Muse SV: Evolutionary analysis of DNA sequences subject to constraints on secondary structure. Genetics 139: 1429-1439 (1995).PubMedGoogle Scholar
  32. 32.
    Neefs J-M, van de Peer Y, de Rijk P, Chapelle S, deWachter R: Compilation of small subunit RNA structures. Nucl Acids Res 21: 3025-3049 (1993).PubMedGoogle Scholar
  33. 33.
    Nelissen B, van de Peer Y, Wilmotte A, de Wachter R: An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166-1173 (1995).PubMedGoogle Scholar
  34. 34.
    Nickrent DL: From field to film: rapid sequencing methods for field collected plant species. BioTechniques 16: 470-475 (1994).PubMedGoogle Scholar
  35. 35.
    Nickrent DL, Duff JR, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW: Molecular phylogenetic and evolutionary studies of parasitic plants. In Soltis DE, Soltis PS, Doyle JJ (ed) Molecular Systematics of Plants, 2nd. ed., Chapman and Hall, New York, in press (1997).Google Scholar
  36. 36.
    Nickrent DL, Duff RJ: Molecular studies of parasitic plants using ribosomal RNA. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in Parasitic Plant Research, pp. 28-52. Junta de Andalucia, Dirección General de Investigación Agraria, Cordoba, Spain (1996).Google Scholar
  37. 37.
    Nickrent DL, Ouyang Y, Duff RJ, dePamphilis CW: Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol 34: 717-729 (1997).CrossRefPubMedGoogle Scholar
  38. 38.
    Nickrent DL, Starr EM:High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol 39: 62-70 (1994).CrossRefPubMedGoogle Scholar
  39. 39.
    Noller HF, Hoffarth V, Zimniak L: Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416-1419 (1992).PubMedGoogle Scholar
  40. 40.
    Palmer JD:Contrastingmodes and tempos of genome evolution in land plant organelles. Trends Genet 6: 115-120 (1990).CrossRefPubMedGoogle Scholar
  41. 41.
    Palmer JD:Agenetic rainbow of plastids. Nature 364: 762-763 (1993).CrossRefGoogle Scholar
  42. 42.
    Siemeister G, Hachtel W: Organization and nucleotide sequence of ribosomal RNA genes on a circular 73 kbp DNA from the colourless flagellate Astasia longa. Curr Genet 17: 433-438 (1990).CrossRefPubMedGoogle Scholar
  43. 43.
    Slupska MM, Baikalov C, Lloyd R, Miller JH: Mutator tRNAs are encoded by the Escherichia colimutator genes mutAand mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci USA USA 93: 4380-4385 (1996).CrossRefGoogle Scholar
  44. 44.
    Takhtajan AL: Sistema magnoliofitov [in Russian]. Nauka, Leningrad (1987).Google Scholar
  45. 45.
    Taylor GW, Wolfe KH, Morden CW, dePamphilis CW, Palmer JD: Lack of a functional plastid tRNAcys gene is associated with loss of photosynthesis in a lineage of parasitic plants. Curr Genet 20: 515-518 (1991).CrossRefPubMedGoogle Scholar
  46. 46.
    Topal M, Fresco J: Complementary base pairing and the origin of substitution mutations. Nature 263: 285-289 (1976).PubMedGoogle Scholar
  47. 47.
    van de Peer Y, van den Broeck I, de Rijk P, de Wachter R: Database on the structure of small ribosomal subunit RNA. Nucl Acids Res 22: 3488-3494 (1994).PubMedGoogle Scholar
  48. 48.
    Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH: Complete gene map of the plastid-like DNAof the malaria parasite Plasmodium falciparum. J Mol Biol 261: 155-172 (1996).CrossRefPubMedGoogle Scholar
  49. 49.
    Woese CR, Gutell R, Gupta R, Noller HF: Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47: 621-669 (1983).PubMedGoogle Scholar
  50. 50.
    Wolfe KH, Katz-Downie DS, Morden CW, Palmer JD: Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Plant Mol Biol 18: 1037- 1048 (1992).PubMedGoogle Scholar
  51. 51.
    Wolfe KH, Morden CW, Palmer JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA USA 89: 10648-10652 (1992).Google Scholar
  52. 52.
    Wolfe KH, Morden CW, Palmer JD: Small single-copy region of plastid DNAin the non-photosynthetic angiosperm Epifagus virginianacontains only two genes. J Mol Biol 223: 95-104 (1992).CrossRefPubMedGoogle Scholar
  53. 53.
    Zuker M, Jaeger JA, Turner DH: A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucl Acids Res 19: 2707-2714 (1991).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Daniel L. Nickrent
    • 1
  • R. Joel Duff
    • 1
  • D.A.M. Konings
    • 2
  1. 1.Department of Plant BiologySouthern Illinois UniversityCarbondaleUSA
  2. 2.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations