Photosynthesis Research

, Volume 53, Issue 2–3, pp 95–108 | Cite as

Phosphorelay control of phycobilisome biogenesis during complementary chromatic adaptation

  • Arthur R. Grossman
  • David M. Kehoe

Abstract

For some cyanobacteria, the spectral distribution of light in the environment regulates the synthesis of specific polypeptides of the phycobilisome or light harvesting antenna complex. This process, called complementary chromatic adaptation, is controlled by a complex type of two component regulatory system. In such pathways, phosphorelay typically occurs through two histidine and two aspartate residues. Generation and complementation of mutants in CCA have uncovered three elements of this pathway, a putative sensor, RcaE, and two response regulators, RcaC and RcaF. RcaC, a large response regulator, contains two input domains, a DNA binding motif and a putative histidine phosphoacceptor domain. RcaF is a small response regulator and apparently lacks an output domain. Ordering of the pathway components has placed RcaE before RcaF, and RcaF before RcaC. This phosphorelay circuitry is novel because it has, instead of four, at least five potential phosphoacceptor domains for signal transduction.

phosphorylation signal transduction two-component regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby JL, Parkinson JS and Bourret RB (1996) The multi-step phosphorelay: Not necessarily a road less traveled. Cell 86: 845-848CrossRefPubMedGoogle Scholar
  2. Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochem 10: 3625-3634Google Scholar
  3. Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419-435CrossRefPubMedGoogle Scholar
  4. Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369-401Google Scholar
  5. Boyd JM and Lory S (1996) Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosapilin subunit gene. J Bacteriol 178: 831-839PubMedGoogle Scholar
  6. Bruns B, Briggs WR and Grossman AR (1989) Molecular characterization of phycobilisome regulatory mutants in Fremyella diplosiphon. J Bacteriol 171: 901-908PubMedGoogle Scholar
  7. Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: General mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425-429PubMedGoogle Scholar
  8. Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes: Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena7409 grown in red light. Eur J Biochem 119: 415-424PubMedGoogle Scholar
  9. Burbulys D, Trach K and Hoch JA (1991) Initiation of sporulation in B. subtilisis controlled by a multicomponent phosphorelay. Cell 64: 545-552PubMedGoogle Scholar
  10. Capuano V, Braux A-S, Tandeau de Marsac N and Houmard J (1991) The ‘anchor polypeptide’ of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcussp. PCC 6301 apcEgene. J Biol Chem 266: 7239-7247PubMedGoogle Scholar
  11. Casey ES and Grossman AR (1994) In vivo and in vitro characterization of the light-regulated cpcB2A2promoter of Fremyella diplosiphon. J Bacteriol 176: 6362-6374PubMedGoogle Scholar
  12. Casey ES, Kehoe DM and Grossman AR (1997) Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation. J Bacteriol 179: 4599-4606PubMedGoogle Scholar
  13. Cavicchioli R, Schroder I, Constanti M and Gunsalus RP (1995) The NarX and NarQ sensor-transmitter proteins of Escherichia colieach require two conserved histidines for nitrate-dependent signal transduction to NarL. J Bacteriol 177: 2416-2424PubMedGoogle Scholar
  14. Chang C, Kwok SF, Bleecker AB and Meyerowitz EM (1993) Arabidopsisethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539-544PubMedGoogle Scholar
  15. Chiang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415-9419PubMedGoogle Scholar
  16. Clack T, Mathews S and Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsisis encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol Biol 25: 413-427PubMedGoogle Scholar
  17. Clegg D and Koshland D (1984) The role of a signaling protein in bacterial sensing: Behavioral effects of increased gene expression. Proc Natl Acad Sci USA 81: 5056-5060PubMedGoogle Scholar
  18. Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon. J Bacteriol 153: 1486-1492PubMedGoogle Scholar
  19. Cobley JG, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger H, Weerasuriya S and Navankasattusas S (1993) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coliinto the chromatically adapting cyanobacterium Fremyella diplosiphon. Plasmid 30: 90-105PubMedGoogle Scholar
  20. Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcussp. Strain PCC 7942: not all bleaching is the same. J Bacteriol 174: 4718-4726PubMedGoogle Scholar
  21. Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13: 1039-1047PubMedGoogle Scholar
  22. Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550-553PubMedGoogle Scholar
  23. Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447-465PubMedGoogle Scholar
  24. Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924-3928Google Scholar
  25. Diakoff S and Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382-385Google Scholar
  26. Engelmann TW (1883a) Farbe und Assimilation. Assimilation findet nur in den farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusammenhang zwischen Lichtabsorption und Assimilation. Bot Z 41: 1-13Google Scholar
  27. Engelmann TW (1883b) Farbe und Assimilation. III. Weitere Folgerungen. Bot Z 41: 17-29Google Scholar
  28. Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Planzenzellen. I. Das Mikrospectrophotometer ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorptionsgrösse. Bot Z 42: 97-105Google Scholar
  29. Eraso JM and Kaplan S (1994) prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176: 32-43PubMedGoogle Scholar
  30. Fairchild CD and Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin α subunit phycocyanobilin lyase. J Biol Chem 269: 8686-8694PubMedGoogle Scholar
  31. Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017-7021PubMedGoogle Scholar
  32. Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072-4081PubMedGoogle Scholar
  33. Federspiel NA and Scott L (1992) Characterization of a light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J Bacteriol 179: 5994-5998Google Scholar
  34. Fiedler U and Weiss V (1995) A common switch in activation of the response regulators NtrC and PhoB: Phosphorylation induces dimerization of the receiver modules. EMBO J 14: 3696-3705PubMedGoogle Scholar
  35. Fujita Y and Hattori A (1960a) Effect of chromatic lights on phycobilin formation in a blue-green alga. Tolypothrix tenuis. Plant Cell Physiol 1: 293-303Google Scholar
  36. Fujita Y and Hattori A (1960b) Formation of phycoerythrin in preilluminated cells of Tolypothrix tenuiswith special reference to nitrogen metabolism. Plant Cell Physiol 1: 281-292Google Scholar
  37. Fujita Y and Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3: 209-220Google Scholar
  38. Gaidukov N (1903) Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. Berichte der Deutschen Botanischen Gesellschaft 21: 517-522Google Scholar
  39. Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327-347CrossRefGoogle Scholar
  40. Glazer AN (1982) Phycobilisomes: structure and dynamics. Ann Rev of Microbiol 36: 173-198Google Scholar
  41. Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev of Biophys and Biophys Chem 14: 47-77Google Scholar
  42. Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a ‘simple’ phycobilisome. Annals Institut Pasteur/Microbiology 134B: 159-180Google Scholar
  43. Groisman EA, Chiao E, Lipps CJ and Heffron F (1989) Salmonella typhimurium phoPvirulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86: 7077-7081PubMedGoogle Scholar
  44. Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651-666Google Scholar
  45. Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: Diversity, control and evolution. Annu Rev Genet 29: 231-287PubMedGoogle Scholar
  46. Grossman AR, Schaefer M, Chiang G and Collier J (1994) The responses of cyanobacteria to environmental conditions: Light and nutrients. In Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 641-675. Kluwer Academic Publishers, Dordrecht, the NetherlandsGoogle Scholar
  47. Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome: A light harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725-749PubMedGoogle Scholar
  48. Hattori A and Fujita Y (1959a) Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by illumination with colored lights. J Biochem 46: 521-524Google Scholar
  49. Hattori A and Fujita Y (1959b) Effect of pre-illumination on the formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis. J Biochem 46: 159-1261Google Scholar
  50. Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835-839Google Scholar
  51. Hertig C, Li RY, Louarn A-M, Garnerone A-M, David M, Batut J, Kahn D and Boistard P (1989) Rhizobium melilotiregulatory gene fixJactivates transcription of R. meliloti nifAand fixKGenes in Escherichia coli. J Bacteriol 171: 1736-1738PubMedGoogle Scholar
  52. Hiller RG, Anderson JM and Larkum AWD (1991) The chlorophyll-protein complexes of algae. In: Scheer H (ed) Chlorophylls, pp 529-547. CRC Press, Boca Raton, FLGoogle Scholar
  53. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1791PubMedGoogle Scholar
  54. Houmard J, Capuano V, Cousin T and Tandeau de Marsac N (1988) Genes encoding core components of the phycobilisome in the cyanobacterium Calothrixsp. strain 7601. Occurrence of a multigene family. J Bacteriol 170: 5512-5521PubMedGoogle Scholar
  55. Hua J, Chang C, Sun Q and Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERSgene. Science 269: 1712-1714PubMedGoogle Scholar
  56. Ishige K, Nagasawa S, Tokishita S-I and Mizuno T (1994) A novel device of bacterial signal transducers. EMBO J 13: 5195-5202PubMedGoogle Scholar
  57. Jacobs JD, Ludwig JR, Hildebrand M, Kukel A, Feng T-Y, Ord RW and Volcani BE (1992) Characterization of two circular plasmids from the marine diatom Cylindrothece fusiformis: Plasmids hybridize to chloroplast and nuclear DNA. Mol Gen Genet 233: 302-310PubMedGoogle Scholar
  58. Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1-19PubMedGoogle Scholar
  59. Kahn K and Schaefer MR (1995) Characterization of transposon Tn5469 from the cyanobacterium Fremyella diplosiphon. J Bacteriol 177: 7026-7032PubMedGoogle Scholar
  60. Kehoe DM and Grossman AR (1994) Complementary chromatic adaptation: Photoperception to gene regulation. Sem in Cell Biol 5: 303-313Google Scholar
  61. Kehoe DM and Grossman AR (1995) The use of site directed mutagenesis in the analysis of complementary chromatic adaptation. In: Proceedings from the Xth International Photosynthesis Congress: Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht, the NetherlandsGoogle Scholar
  62. Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409-1412PubMedGoogle Scholar
  63. Kehoe DM and Grossman AR (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol (in press)Google Scholar
  64. Kendrick RE and Kronenberg GHM (1994) Photomorphogenesis in Plants. 2nd ed. Kluwer Academic Publishers, Dordrecht, the NetherlandsGoogle Scholar
  65. Klose KE, Weiss DS and Kustu S (1993) Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol 232: 67-78PubMedGoogle Scholar
  66. Lee T-Y, Makino K, Shinagawa H, Amemura M and Nakata A (1989) Phosphate regulon in members of the family Enterobacteriaceae: Comparison of the phoB-phoRoperons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J Bacteriol 171: 6593-6599PubMedGoogle Scholar
  67. Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675-2684PubMedGoogle Scholar
  68. Lukat GS, McCleary WR, Stock AM and Stock JB (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci USA 89: 718-722PubMedGoogle Scholar
  69. Mazel D and Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245-248PubMedGoogle Scholar
  70. Mazel D, Bernard C, Schwarz R and Tandeau de Marsac N (1991) Characterization of two insertion sequences from the cyanobacterium Calothrixsp. PCC 7601. Mol Microbiol 5: 2165-2170PubMedGoogle Scholar
  71. Mazel D, Guglielmi G, Houmard H, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix7601. Nucleic Acids Res 14: 8279-8290PubMedGoogle Scholar
  72. Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrixsp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296-304CrossRefGoogle Scholar
  73. Melchers LS, Thompson DV, Idler KB, Schilperoort RA and Hooykaas PJ (1986) Nucleotide sequence of the virulence gene virGof the Agrobacterium tumefaciensoctopine Ti plasmid: Significant homology between virGand the regulatory genes ompR, phoBand dyeof E. coli. Nucleic Acids Res 14: 9933-9942PubMedGoogle Scholar
  74. Mettke I, Fiedler U and Weiss V (1995) Mechanism of activation of a response regulator: Interaction of NtrC-P dimers induces ATPase activity. J Bacteriol 177: 5056-5061PubMedGoogle Scholar
  75. Oelmüller R, Conley PB, Federspiel N, Briggs WR and Grossman AR (1988a) Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphonto different light qualities. Plant Physiol 88: 1077-1083Google Scholar
  76. Oelmüller R, Grossman AR and Briggs WR (1988b) Photoreversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88: 1084-1091Google Scholar
  77. Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71-112CrossRefPubMedGoogle Scholar
  78. Perego M and Hoch JA (1991) Negative regulation of Bacillus subtilissporulation by spo0Egene product. J Bacteriol 173: 2514-2520PubMedGoogle Scholar
  79. Perego M and Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97-101PubMedGoogle Scholar
  80. Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta 501: 232-245PubMedGoogle Scholar
  81. Posas R, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC and Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘two-component’ osmosensor. Cell 86: 865-875CrossRefPubMedGoogle Scholar
  82. Ravid S, Matsumura P and Eisenbach M (1986) Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY. Proc Natl Acad Sci USA 83: 7157-7161PubMedGoogle Scholar
  83. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ and Kado CI (1987) Regulation of the virGenes of Agrobacterium tumefaciensplasmid pTiC58. J Bacteriol 169: 5101-5112PubMedGoogle Scholar
  84. Schmidt-Goff CM and Federspiel NA (1993) In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol 175: 1806-1813PubMedGoogle Scholar
  85. Schneider-Poetsch HAW, Braun B, Marx S and Schaumburg A (1991) Phytochromes and bacterial sensor proteins are related by structural and functional homologies. FEBS Lett 281: 245-249CrossRefPubMedGoogle Scholar
  86. Searle GFW, Barber J, Porter G and Tredwell CJ (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light-harvesting complex (phycobilisomes). Biochim Biophys Acta 501: 246-256PubMedGoogle Scholar
  87. Seki T, Yoshikawa H, Takahashi H and Saito H (1988) Nucleotide sequence of the Bacillus subtilis phoRgene. J Bacteriol 170: 5935-5938PubMedGoogle Scholar
  88. Shattuck-Eidens DM and Kadner RJ (1983) Molecular cloning of the uhpregion and evidence for a positive activator for expression of the hexose phosphate transport system of Escherichia coli. J Bacteriol 155: 1062-1070PubMedGoogle Scholar
  89. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139-216. Kluwer Academic Publishers, Dordrecht, the NetherlandsGoogle Scholar
  90. Sobczyk A, Bely A, Tandeau de Marsac N and Houmard J (1994) A phosphorylated DNA-binding protein is specific for the red-light signal during complementary chromatic adaptation in cyanobacteria. Mol Microbiol 13: 875-885PubMedGoogle Scholar
  91. Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrixsp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J 12: 997-1004PubMedGoogle Scholar
  92. Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82-91PubMedGoogle Scholar
  93. Tandeau de Marsac N (1983) Phycobilisomes and complementary adaptation in cyanobacteria. Bulletin de L'Institut Pasteur 81: 201-254Google Scholar
  94. Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119-190CrossRefGoogle Scholar
  95. Thümmler F, Algorra P and Fobo GM (1995) Sequence similarities of phytochrome to protein kinases: Implication for the structure, function and evolution of the phytochrome gene family. FEBS Lett 357: 149-155PubMedGoogle Scholar
  96. Uhl MA and Miller JF (1996) Integration of multiple domains in a two-component sensor protein: The Bordetella pertussisBvgAS phosphorelay. EMBO J 15(5): 1028-1036PubMedGoogle Scholar
  97. Vogelmann TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233-239Google Scholar
  98. Wanner BL (1994) Phosphate-regulated genes for the utilization of phosphonates in members of the family Enterobacteriaceae. In Torriani-Gorini A, Yagil E and Silver S (ed) Phosphate in Microorganisms. Cellular and Molecular Biology, pp 215-222. ASM Press, Washington, DCGoogle Scholar
  99. Wanner BL and Wilmes-Riesenberg MR (1992) Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in the control of the phosphate regulation in an Escherichia coli. J Bacteriol 174: 2124-2130PubMedGoogle Scholar
  100. Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ and Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270: 1807-1809PubMedGoogle Scholar
  101. Wolfe AJ, Conley P, Kramer TJ and Berg HC (1987) Reconstitution of signaling in bacterial chemotaxis. J Bacteriol 169: 1878-1885PubMedGoogle Scholar
  102. Wurtzel ET, Chou MY and Inouye M (1982) Osmoregulation of gene expression. I. DNA sequence of the ompRgene of the ompBoperon of Escherichia coliand characterization of its gene product. J Biol Chem 257: 13685-13691PubMedGoogle Scholar
  103. Yamaguchi S, Aizawa S-I, Kihara M, Isomura M, Jones CJ and Macnab RM (1986) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172-1179PubMedGoogle Scholar
  104. Yamanaka G and Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcussp. Arch Microbiol 124: 39-47CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Arthur R. Grossman
    • 1
  • David M. Kehoe
    • 1
  1. 1.Department of Plant BiologyThe Carnegie Institution of WashingtonStanfordUSA

Personalised recommendations