Journal of Automated Reasoning

, Volume 21, Issue 2, pp 177–203 | Cite as

The TPTP Problem Library

  • Geoff Sutcliffe
  • Christian Suttner
Article

Abstract

This paper provides a detailed description of the CNF part of the TPTP Problem Library for automated theorem-proving systems. The library is available via the Internet and forms a common basis for development and experimentation with automated theorem provers. This paper explains the motivations and reasoning behind the development of the TPTP (thus implicitly explaining the design decisions made) and describes the TPTP contents and organization. It also provides guidelines for obtaining and using the library, summary statistics about release v1.2.1, and an overview of the tptp2X utility program. References for all the sources of TPTP problems are provided.

TPTP problem library experimental evaluation 

References

  1. 1.
    Mathematical Subject Classification, American Mathematical Society, 1992.Google Scholar
  2. 2.
    Allen, J. F., Kautz, H. A., Pelavin, R. N., and Tenenberg, J. D.: Reasoning about Plans, Morgan Kaufmann, 1991.Google Scholar
  3. 3.
    Anantharaman, S. and Hsiang, J.: Automated proofs of the Moufang identities in alternative rings, Journal of Automated Reasoning 6(1) (1990), 79–110. yGoogle Scholar
  4. 4.
    Angshuman, G. and Zhang, H.: Andrews' challenge problem: Clause conversion and solutions, AAR Newsletter 14 (1989), 5–8.Google Scholar
  5. 5.
    ANL. Argonne National Laboratory Problem Library. Available by anonymous ftp from info.msc.anl.gov, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois.Google Scholar
  6. 6.
    Astrachan, O. L.: METEOR: Exploring model elimination theorem proving, Journal of Automated Reasoning 13(3) (1994), 283–296.Google Scholar
  7. 7.
    Barendregt, H. P.: The Lambda Calculus: Its Syntax and Semantics, North-Holland, 1981.Google Scholar
  8. 8.
    Beckert, B. and Posegga, J.: leanTAP: Lean, tableau-based deduction, Journal of Automated Reasoning 15(3) (1995), 339–358.Google Scholar
  9. 9.
    Benanav, D.: Recognising unnecessary clauses in resolution based systems, Journal of Automated Reasoning 9(1) (1992), 43–76.Google Scholar
  10. 10.
    Birkhoff, G. and Bartee, T.: Modern Applied Algebra, McGraw-Hill, 1970.Google Scholar
  11. 11.
    Birkhoff, G. and MacLane, S.: A Survey of Modern Algebra, Macmillan, 1965.Google Scholar
  12. 12.
    Bledsoe, W. W.: Non-Resolution Theorem Proving, Artificial Intelligence 9 (1977), 1–35.Google Scholar
  13. 13.
    Bledsoe, W. W.: Challenge problems in elementary calculus, Journal of Automated Reasoning 6 (1990), 341–359.Google Scholar
  14. 14.
    Bonacina, M. P.: Problems in Lukasiewicz logic, AAR Newsletter 18 (1991), 5–12.Google Scholar
  15. 15.
    Bourbaki, N.: Algebra I – Chapters 1–3, Springer-Verlag, 1989.Google Scholar
  16. 16.
    Bourely, C., Caferra, R., and Peltier, N.: A method for building models automatically. Experiments with an extension of Otter, in A. Bundy (ed.), Proceedings of the 12th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 814, Springer-Verlag, 1994, pp. 72–86.Google Scholar
  17. 17.
    Boyer, R., Lusk, E., McCune, W. W., Overbeek, R., Stickel, M., and Wos, L.: Set theory in first-order logic: Clauses for Godel's axioms, Journal of Automated Reasoning 2(3) (1986), 287–327.Google Scholar
  18. 18.
    Brushi, M.: The halting problem, AAR Newsletter 17 (1991), 7–12.Google Scholar
  19. 19.
    Burkholder, L.: A 76th automated theorem proving problem, AAR Newsletter 8 (1987), 6–7.Google Scholar
  20. 20.
    Carroll, L.: Lewis Carroll's Symbolic Logic, C. N. Potter, 1986.Google Scholar
  21. 21.
    Chang, C.-L.: The unit proof and the input proof in theorem proving, Journal of the ACM 17(4) (1970), 698–707.Google Scholar
  22. 22.
    Church, A.: Introduction to Mathematical Logic I, Princeton University Press, 1956.Google Scholar
  23. 23.
    Curry, H. B. and Feys, R.: Combinatory Logic I, North-Holland, 1958.Google Scholar
  24. 24.
    Curry, H. B., Hindley, J. R., and Seldin, J. P.: Combinatory Logic II, North-Holland, 1972.Google Scholar
  25. 25.
    Dewey, M.: Dewey Decimal Classification and Relative Index, 20th edition, Forest Press, 1989.Google Scholar
  26. 26.
    Fermuller, C.: E-mail to G. Sutcliffe, 1994.Google Scholar
  27. 27.
    Fermuller, C., Leitsch, A., Tammet, T., and Zamov, N.: Resolution ethods for the Decision Problem, Lecture Notes in Computer Science 679, Springer-Verlag, 1993.Google Scholar
  28. 28.
    Fleisig, S., Loveland, D. W., Smiley, A. K., and Yarmush, D. L.: An implementation of the model elimination proof procedure, Journal of the ACM 21(1) (1974), 124–139.Google Scholar
  29. 29.
    Fujita, M., Hasegawa, R., Koshimura, M., and Fujita, H.: Model generation theorem provers on a parallel inference machine, in Proceedings of the International Conference on Fifth Generation Computer Systems, 1992, pp. 357–375.Google Scholar
  30. 30.
    Fujita, M., Slaney, J., and Bennett, F.: Automatic generation of some results in finite algebra, in R. Bajcsy (ed.), Proceedings of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1993, pp. 52–57.Google Scholar
  31. 31.
    Genesereth, M. R. and Fikes, R. E.: Knowledge Interchange Format, Version 3.0 Reference Manual, Technical Report Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992.Google Scholar
  32. 32.
    Glickfield, B. and Overbeek, R.: A foray into combinatory logic, Journal of Automated Reasoning 2(4) (1986), 419–431.Google Scholar
  33. 33.
    Hähnle, R., Beckert, B., and Gerberding, S.: The many-valued tableau-based theorem prover 3TAP, Technical Report TR 30/94, Fakultät für Informatik, Universät Karlsruhe, Karlsruhe, Germany, 1994.Google Scholar
  34. 34.
    Harary, F.: Graph Theory, Addison-Wesley, 1969.Google Scholar
  35. 35.
    Hardy, G. F. and Wright, E.M.: An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, 1992.Google Scholar
  36. 36.
    Hayes, J. P.: Introduction to Digital Logic Circuit Design, Addison-Wesley, 1993.Google Scholar
  37. 37.
    Henkin, L.: Completeness in the theory of types, Journal of Symbolic Logic 15 (1950), 81–91.Google Scholar
  38. 38.
    Henkin, L., Monk, J., and Tarski, A.: Cylindrical Algebras, volume Part 1, North-Holland, 1971.Google Scholar
  39. 39.
    Hopcroft, J. and Ullman, J.: Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.Google Scholar
  40. 40.
    Howson, A. G.: A Handbook of Terms used in Algebra and Analysis, Cambridge University Press, 1972.Google Scholar
  41. 41.
    Jech, T.: LD-algebras, Association for Automated Reasoning Newsletter 22 (1993), 9–12.Google Scholar
  42. 42.
    Jech, T.: Otter experiments in a system of combinatory logic, Journal of Automated Reasoning 14(3) (1995), 413–426.Google Scholar
  43. 43.
    Kelley, J. L.: General Topology, D. Van Nostrand, 1955.Google Scholar
  44. 44.
    Kunen, K.: Single axioms for groups, Journal of Automated Reasoning 9(3) (1992), 291–308.Google Scholar
  45. 45.
    Lawrence, J. D. and Starkey, J. D.: Experimental tests of resolution based theorem-proving strategies, Technical Report, Computer Science Department, Washington State University, Pullman, USA, 1974.Google Scholar
  46. 46.
    Leblanc, H.: Alternatives to standard first-oder semantics, in D. Gabbay and F. Guenther (eds), Handbook of Philosophical Logic, volume I, chapter I.3, D. Reidel, 1983, pp. 189–274.Google Scholar
  47. 47.
    Lee, S.-J. and Plaisted, D. A.: Eliminating duplication with the hyper-linking strategy, Journal of Automated Reasoning 9(1) (1992), 25–42.Google Scholar
  48. 48.
    Letz, R., Mayr, K., and Goller, C.: Controlled integration of the cut rule into connection tableau calculi. Journal of Automated Reasoning 13(3) (1994), 297–337.Google Scholar
  49. 49.
    Letz, R., Schumann, J., Bayerl, S., and Bibel, W.: SETHEO: A high-performance theorem prover, Journal of Automated Reasoning 8(2) (1992), 183–212.Google Scholar
  50. 50.
    Loveland, D. W.: Mechanical theorem proving by model elimination, Journal of the ACM 15(2) (1968), 236–251.Google Scholar
  51. 51.
    Loveland, D. W.: Theorem-provers combining model elimination and resolution, Machine Intelligence 4 (1969), 73–86.Google Scholar
  52. 52.
    Luckham, D.: Some tree-paring strategies for theorem proving, Machine Intelligence 3 (1968), 95–112.Google Scholar
  53. 53.
    Lukasiewicz, J.: Elements of Mathematical Logic, Pergamon Press, 1963.Google Scholar
  54. 54.
    Lusk, E. and Overbeek, R.: Non-Horn problems, Journal of Automated Reasoning 1(1) (1985), 103–114.Google Scholar
  55. 55.
    Lusk, E. and Wos, L.: Benchmark problems in which equality plays the major role, Technical Report MCS-P275-1191, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, USA, 1991.Google Scholar
  56. 56.
    Lusk, E. and Wos, L.: Benchmark problems in which equality plays the major role, in: D. Kapur (ed.), Proceedings of the 11th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 607, Springer-Verlag, 1992, pp. 781–785.Google Scholar
  57. 57.
    Lusk, E. L. and McCune, W. W.: Experiments with ROO, a parallel automated deduction system, in B. Fronhofer and G. Wrightson (eds), Parallelization in Inference Systems, volume 590, 1992, pp. 139–162.Google Scholar
  58. 58.
    Lusk, E. L. and McCune, W. W.: Uniform strategies: The CADE-11 theorem proving contest, Journal of Automated Reasoning 11(3) (1993), 317–331.Google Scholar
  59. 59.
    MacLane, S.: Categories for the Working Mathematician, Springer-Verlag, 1971.Google Scholar
  60. 60.
    Manthey, R. and Bry, F.: SATCHMO: A theorem prover implemented in prolog, in R. Overbeek and E. Lusk (ed.), Proceedings of the 9th International Conference on Automated Deduction, Lecture Notes in Computer Science 310, Springer-Verlag, 1988, pp. 415–434.Google Scholar
  61. 61.
    McCharen, J. D., Overbeek, R. A., and Wos, L. A.: Problems and experiments for and with automated theorem-proving programs, IEEE Transactions on Computers 25(8) (1976), 773–782.Google Scholar
  62. 62.
    McCune, W. W.: Challenge equality problems in lattice theory, in Proceedings of the 9th International Conference on Automated Deduction – Argonne, Illinois, USA, May 1988, Springer-Verlag, 1988, pp. 704–709.Google Scholar
  63. 63.
    McCune, W. W. and Wos, L.: Experiments in automated deduction with condensed detachment, in D. Kapur (ed.), Proceedings of the 11th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 607, Springer-Verlag, 1992, pp. 209–223.Google Scholar
  64. 64.
    McCune, W. W.: Automated discovery of new axiomatizations of the left group and right group calculi, Journal of Automated Reasoning 9(1) (1992), 1–24.Google Scholar
  65. 65.
    McCune, W. W.: Single axioms for groups and Abelian groups with various operations, Journal of Automated Reasoning 10(1) (1993), 1–13.Google Scholar
  66. 66.
    McCune, W.W.: Otter 3.0 reference manual and guide, Technical Report ANL-94/6, Argonne National Laboratory, Argonne, USA, 1994.Google Scholar
  67. 67.
    McCune, W. W. and Lusk, E.: A challenging theorem of Levi, AAR Newsletter 21 (1992), 8.Google Scholar
  68. 68.
    McCune, W. W. and Wos, L.: Some fixed point problems in combinatory logic,AAR Newsletter 10 (1988), 7–8.Google Scholar
  69. 69.
    Michie, D., Ross, R., and Shannan, G. J.: G-deduction, Machine Intelligence 7 (1972), 141–165.Google Scholar
  70. 70.
    Munkres, J. R.: Topology: A First Course, Prentice-Hall, 1975.Google Scholar
  71. 71.
    von Neumann, J.: Eine Axiomatisierung der Mengenlehre, Journal für die Reine und Angewandte Mathematik 154 (1925), 219–240.Google Scholar
  72. 72.
    Ohlbach, H. J.: Predicate logic hacker tricks, Journal of Automated Reasoning 1(4) (1985), 435–440.Google Scholar
  73. 73.
    Ohlbach, H. J. and Schmidt-Schauss, M.: The lion and the unicorn, Journal of Automated Reasoning 1(3) (1985), 327–332.Google Scholar
  74. 74.
    Otter, The problem collection distributed with the Otter ATP system [McC90].Google Scholar
  75. 75.
    Overbeek, R.: ATP competition announced at CADE-10, 1990.Google Scholar
  76. 76.
    Overbeek, R., McCharen, J., and Wos, L.: Complexity and related enhancements for automated theorem-proving programs, Computers and Mathematics with Applications 2 (1976), 1–16.Google Scholar
  77. 77.
    Pelletier, F. J.: Seventy-five problems for testing automatic theorem provers, Journal of Automated Reasoning 2(2) (1986), 191–216.Google Scholar
  78. 78.
    Pfenning, F.: Single axioms in the implicational propositional calculus, in: R. Overbeek and E. Lusk (eds), Proceedings of the 9th International Conference on Automated Deduction, Lecture Notes in Computer Science 310, Springer-Verlag, 1988, pp. 710–713.Google Scholar
  79. 79.
    Plaisted, D. A.: Theorem proving with abstraction, Artificial Intelligence 16 (1981), 47–108.Google Scholar
  80. 80.
    Plaisted, D. A.: A simplified problem reduction format, Artificial Intelligence 18 (1982), 227–261.Google Scholar
  81. 81.
    Plaisted, D. A.: Non-Horn clause logic programming without contrapositives, Journal of Automated Reasoning 4(3) (1988), 287–325.Google Scholar
  82. 82.
    Plaisted, D. A.: The search efficiency of theorem proving strategies, in A. Bundy (ed.), Proceedings of the 12th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 814, Springer-Verlag, 1994, pp. 57–71.Google Scholar
  83. 83.
    Quaife, A.: Automated development of Tarski's geometry, Journal of Automated Reasoning 5(1) (1989), 97–118.Google Scholar
  84. 84.
    Quaife, A.: Andrews' challenge problem revisited, AAR Newsletter 15 (1990), 3–7.Google Scholar
  85. 85.
    Quaife, A.: Automated deduction in von Neumann–Bernays–Godel set theory, Journal of Automated Reasoning 8(1) (1992), 91–147.Google Scholar
  86. 86.
    Quaife, A.: Automated Development of Fundamental Mathematical Theories, Kluwer Academic Publishers, 1992.Google Scholar
  87. 87.
    Quaife, A.: E-mail to G. Sutcliffe, 1992.Google Scholar
  88. 88.
    Quine, W. V.: Set Theory and its Logic, Harvard University Press, 1969.Google Scholar
  89. 89.
    Reboh, R., Raphael, B., Yates, R. A., Kling, R. E., and Velarde, C.: Study of Automatic Theorem Proving Programs. Technical Report Technical Note 72, Artificial Intelligence Center, SRI International, Menlo Park, CA, 1972.Google Scholar
  90. 90.
    Robinson, J. A.: Theorem proving on the computer, Jounal of the ACM 10(2) (1963), 163–174.Google Scholar
  91. 91.
    Ross, K. A.: Elementary Analysis: The Theory of Calculus, 2nd edition, Springer-Verlag, 1990.Google Scholar
  92. 92.
    Schulz, S.: Explanation based learning for distributed equational deduction, Master's thesis, Universität Kaiserslautern, 1995.Google Scholar
  93. 93.
    Schumann, J., Trapp, N., and van der Koelen, M.: SETHEO/PARTHEO Users Manual, Technical Report SFB Bericht 342/7/90 A, Institut für Informatik, Technische Universität München, Munich, Germany, 1990.Google Scholar
  94. 94.
    Segre, A. and Elkan, C.: A high-performance explanation-based learning algorithm, Artificial Intelligence 69 (NEED) (1994), 1–50.Google Scholar
  95. 95.
    SETHEO, AR Research Group, Technische Universität München, Problem Library, No longer available.Google Scholar
  96. 96.
    Shostak, R. E.: Refutation graphs, Artificial Intelligence 7 (1976), 51–64.Google Scholar
  97. 97.
    Slagle, J. R.: Automatic theorem proving with renamable and semantic resolution, Journal of the ACM 14(4) (1967), 687–697.Google Scholar
  98. 98.
    Slaney, J.: E-mail to G. Sutcliffe, 1993.Google Scholar
  99. 99.
    Slaney, J., Fujita, M., and Stickel, M.: Automated reasoning and exhaustive search: Quasigroup existence problems, Computers and Mathematics with Applications 29(2) (1995), 115–132.Google Scholar
  100. 100.
    Smullyan, R. M.: To Mock a Mocking Bird and Other Logic Puzzles, Knopf, 1978.Google Scholar
  101. 101.
    Smullyan, R.M.: What Is the Name of This Book? The Riddle of Dracula and Other Logical Puzzles, Prentice-Hall, 1978.Google Scholar
  102. 102.
    SPRFN, The problem collection distributed with the SPRFN ATP system.Google Scholar
  103. 103.
    Stevens, R. L.: Some experiments in nonassociative ring theory with an automated theorem prover, Journal of Automated Reasoning 3(2) (1987), 211–221.Google Scholar
  104. 104.
    Stickel, M.: E-mail to G. Sutcliffe, 1993.Google Scholar
  105. 105.
    Stickel, M. E.: A Prolog technology theorem prover, New Generation Computing 2(4) (1984), 371–383.Google Scholar
  106. 106.
    Stickel, M. E.: Schubert's steamroller problem: Formulations and solutions, Journal of Automated Reasoning 2(1) (1986), 89–101.Google Scholar
  107. 107.
    Stickel, M. E.: Upside-down meta-interpretation of the model elimination theorem-proving procedure for deduction and abduction, Journal of Automated Reasoning 13(2) (1994), 189–210.Google Scholar
  108. 108.
    Sutcliffe, G. and Suttner, C. B.: ATP system results for the TPTP problem library (upto TPTP v1.1.3), 1995, Technical Report 95/16, Department of Computer Science, James Cook University, Townsville, Australia; Technical Report AR-95-06, Institut für Informatik, Technische Universität München, Munich, Germany.Google Scholar
  109. 109.
    Sutcliffe, G. and Suttner, C. B.: Special issue: The CADE-13 ATP system competition, Journal of Automated Reasoning 18(2) (1997).Google Scholar
  110. 110.
    Suttner, C. B. and Sutcliffe, G.: The TPTP problem library (TPTP v1.2.1), 1996, Technical Report AR-96-02, Institut für Informatik, Technische Universität München, Munich, Germany; Technical Report 96/09, Department of Computer Science, James Cook University, Townsville, Australia.Google Scholar
  111. 111.
    Tammet, T.: E-mail to Geoff Sutcliffe, 1994.Google Scholar
  112. 112.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edition, University of California Press, 1951.Google Scholar
  113. 113.
    Tarski, A.: What is Elementary Geometry? in L. Henkin (ed.), Proceedings of an International Symposium. The Axiomatic Method with Special Reference to Geometry and Physics, North-Holland, 1959.Google Scholar
  114. 114.
    Veroff, R.: Group Theory Problems, 1992.Google Scholar
  115. 115.
    Veroff, R.: Problem set, AAR Newsletter 24 (1994), 8.Google Scholar
  116. 116.
    Wang, H.: Formalization and automatic theorem-proving, in W. A. Kalenich (ed.), Proceedings of the IFIP Congress, Spartan Books, 1965, pp. 51–58.Google Scholar
  117. 117.
    Wang, T.-C.: Designing examples for semantically guided hierarchical deduction, in A. Joshi (ed.), Proceedings of the 9th International Joint Conference on Artificial Intelligence, Los Altos, International Joint Conferences on Artificial Intelligence, Inc., 1985, pp. 1201–1207Google Scholar
  118. 118.
    Wang, T.-C. and Bledsoe, W.W.: Hierarchical deduction, Journal of Automated Reasoning 3(1) (1987), 35–77.Google Scholar
  119. 119.
    Weidenbach, C.: SPASS – a first-order theorem prover and a CNF-translator, URL http://www.mpi-sb.mpg.de/guide/software/spass.html, 1996.Google Scholar
  120. 120.
    Weidenbach, C., Gaede, B., and Rock, G.: SPASS & FLOTTER, in M. McRobbie and J. Slaney (eds), Proceedings of the 13th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 1104, Springer-Verlag, 1996, pp. 141–145.Google Scholar
  121. 121.
    Whitehead, A. N. and Russell, B.: Principia Mathematica, Vol. 1, 2nd edition, Cambridge Univ. Press, 1927.Google Scholar
  122. 122.
    Whitesitt, J. E.: Boolean Algebra and Its Applications, Addison-Wesley, 1961.Google Scholar
  123. 123.
    Wick, C. and McCune, W.: Automated reasoning about elementary point-set topology, Journal of Automated Reasoning 5 (1989), 239–255.Google Scholar
  124. 124.
    Wilson, D. S. and Loveland, D.W.: Incorporating relevancy testing in SATCHMO, Technical Report CS-1989-24, Department of Computer Science, Duke University, Durham, USA, 1989.Google Scholar
  125. 125.
    Wilson, G. A. and Minker, J.: Resolution strategies: A comparative study, IEEE Transactions on Computers C-25(8) (1976), 782–801.Google Scholar
  126. 126.
    Winker, S.: Generation and verification of finite models and counterexamples using an automated theorem prover answering two open questions, Journal of the ACM 29(2) (1982), 273–284.Google Scholar
  127. 127.
    Winker, S.: Robbins algebra: Conditions that make a near-Boolean algebra Boolean, Journal of Automated Reasoning 6(4) (1990), 465–489.Google Scholar
  128. 128.
    Wojciechowski, W. S. and Wojcik, A. S.: Automated design of multi-valued logic circuits by automated theorem proving techniques, IEEE Transactions on Computers C-32(8) (1983), 785–798.Google Scholar
  129. 129.
    Wojcik, A. S.: Formal design verification of digital systems, in Proceedings of the 20th Design Automation Conference, 1983.Google Scholar
  130. 130.
    Wos, L.: Unpublished note, Argonne National Laboratory, Argonne, USA, 1965.Google Scholar
  131. 131.
    Wos, L.: Automated Reasoning – 33 Basic Research Problems, Prentice-Hall, 1988.Google Scholar
  132. 132.
    Wos, L.: A challenge problem and a recent workshop, AAR Newsletter 13 (1989), 2–8.Google Scholar
  133. 133.
    Wos, L.: The kernel strategy and its use for the study of combinatory logic, Journal of Automated Reasoning 10(3) (1993), 287–344.Google Scholar
  134. 134.
    Wos, L.: Challenge in group theory, AAR Newsletter 26 (1994), 3–5.Google Scholar
  135. 135.
    Wos, L. and McCune, W.: Challenge problems focusing on equality and combinatory logic: Evaluating automated theorem-proving programs, in R. Overbeek and E. Lusk (eds), Proceedings of the 9th International Conference on Automated Deduction, Lecture Notes in Computer Science 310, Springer-Verlag, 1988, pp. 714–729.Google Scholar
  136. 136.
    Wos, L., Overbeek, R., Lusk, E., and Boyle, J.: Automated Reasoning – Introduction and Applications, 2nd edition, McGraw-Hill, 1992.Google Scholar
  137. 137.
    Wos, L., Winker, S., McCune, W. W., Overbeek, R., Lusk, E., and Stevens, R.: Automated reasoning contributes to mathematics and logic, in M. Stickel (ed.), Proceedings of the 10th International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, pp. 485–499.Google Scholar
  138. 138.
    Zhang, Z.: Automated proofs of equality problems in Overbeek's competition, Journal of Automated Reasoning 11(3) (1993), 333–351.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Geoff Sutcliffe
    • 1
  • Christian Suttner
    • 2
  1. 1.Department of Computer ScienceJames Cook UniversityTownsvilleAustralia
  2. 2.Institut für InformatikMunichGermany

Personalised recommendations