Advertisement

Journal of Atmospheric Chemistry

, Volume 27, Issue 2, pp 107–126 | Cite as

Partitioning Between Chlorine Reservoir Species Deduced from Observations in the Arctic Winter Stratosphere

  • Andreas Engel
  • Ulrich Schmidt
  • Robert a. Stachnik
Article

Abstract

Simultaneous observations of several chlorine source gases, as well asHCl and ClO, have been performed in the Arctic stratosphere on 1 and 9February 1994, using balloon-borne instrumentation as a contribution toSESAME (Second European Stratospheric Arctic and Mid latitude Experiment).The observed mixing ratios of HCl and N2O show a clearanticorrelation. No severe loss of HCl was observed inside the vortex duringour measurement. These measurements showed that during this period at 20 kmand above, HCl was either in excess, or at least as abundant, asClONO2 and comprised between 50 and 70% of theavailable chlorine, Cly. On 1 February, measurements were madeinside the polar vortex. The air mass sampled on this day showed a clearsignature of diabatic descent, and also enhanced levels of ClO with amaximum of 230 pptv at 22.5 km. A 10 day backward trajectory analysis showedthat these air masses had passed a large region of low temperatures a fewhours prior to the measurement. Temperatures along the back trajectory atthe 475 K and 550 K levels (20.1 and 23.7 km respectively) were cold enoughfor heterogeneous chlorine activation to occur, in agreement with theobserved elevated ClO mixing ratios.

Stratosphere polar processes chlorine partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. G., Toohey, D. W., and Brune, W. H., 1991: Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss, Science 251, 39–46.Google Scholar
  2. Bauer, R., Engel, A., Franken, H., Klein, E., Kulessa, G., Schiller, C., Schmidt, U., Borchers, R., and Lee, J., 1994: Monitoring the vertical structure of the Arctic polar vortex over northern Scandinavia during EASOE: Regular N2O profile observations, Geophys. Res. Lett. 21, 1211–1214.Google Scholar
  3. Considine, D. B., Douglass, A. R., and Jacman, C. H., 1994: Effects of a polar stratospheric cloud parametrization on ozone depletion due to stratospheric aircraft in a two-dimensional model, J. Geophys. Res. 99, 18,879–18,894.Google Scholar
  4. Dessler, A. E., Considine, D. B., Morris, G. A., Schoeberl, M. R., Russell III, J. M., Roche, A. E., Kumer, J. B., Mergenthaler, J. L., Waters, J. W., Gille, J. C., and Yue, G. K., 1995: Correlated observations of HCl and ClONO2 from UARS and implications for stratospheric chlorine partitioning, Geophys. Res. Lett. 22, 1721–1724.Google Scholar
  5. Engel, A. and Schmidt, U., 1994: Spurengasmessungen zur Charakterisierung der stratosphärischen Zirkulation in der Nordhemisphäre im Winter, Final report to project 01 VOZ 14/5 in the German ozone research program.Google Scholar
  6. Farman, J. C., Gardiner, B. G., and Shanklin, J. D., 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature 315, 207–210.Google Scholar
  7. Gathen von der, P., Rex, M., Harris, N. R. P., Lusic, D., Knudsen, B. M., Braathen, G. O., De Backer, H., Fabian, R., Fast, H., Gil, M., Kyrö, E., Mikkelsen, I. S., Rummukainen, M., Stähelin, J., and Vorotsos, C., 1995: Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92, Nature 375, 131–134.Google Scholar
  8. Kaye, J. A., Penkett, S. A., and Ormond, F. M., 1994: Report on the concentrations, lifetimes, and trends of CFCs, Halons, and related species, NASA Ref. Publ. 1339.Google Scholar
  9. Knudsen, B. M. and Carver, G. D., 1994: Accuracy of the isentropic trajectories calculated for the EASOE campaign, Geophys. Res. Lett. 21, 1199–1202.Google Scholar
  10. Lait, L. R., 1994: An alternative form for potential vorticity, J. Atmos. Sci. 51, 1754–1759.Google Scholar
  11. Loewenstein, M., Podolske, J. R., Chan, K. R., and Strahan, S. E., 1990: N2O as a dynamical tracer in the arctic vortex, Geophys. Res. Lett. 17, 477–480.Google Scholar
  12. Manney, G. L., Froidevaux, L., Waters, J.W., Zurek, R. W., Read, W. G., Elson, L. S., Kumer, J. B., Mergenthaler, J. L., Roche, A. E., O’Neill, A., Harwood, R. S., MacKenzie, I., and Swinbank, R., 1994: Chemical depletion of ozone in the arctic lower stratosphere during winter 1992–93, Nature 370, 429–434.Google Scholar
  13. McCormich, M. P., 1992: Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data, Geophys. Res. Lett. 19, 269–272.Google Scholar
  14. McIntyre, M. E., 1992: Atmospheric dynamics: Some fundamentals, with observational implications, Proc. Internat. School Phys. ‘Enrico Fermi’, 1–64.Google Scholar
  15. Müller, R., Crutzen, P. J., Grooß, J.-U., Brühl, C., Russell III, J. M., and Tuck, A. F., 1996: Chlorine activation and ozone depletion in the Arctic vortex: Observations by the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite, accepted for publication in J. Geophys. Res. Google Scholar
  16. Naujokat, B., Labitzke, K., Lenschow, R., Rajewski, B., Wiesner, M., and Wohlfahrt, R.-C., 1994: The stratospheric winter 1993/1994: A winter with some minor warmings and an early final warming, Beilage zur Berliner Wetter Karte, SO 24/94.Google Scholar
  17. Plumb, R. A. and Ko, M. K. W., 1992: Interrelationships between mixing ratios of long-lived stratospheric constituents, J. Geophys. Res. 97, 10,145–10,156.Google Scholar
  18. Poynter, R. L. and Pickett, H. M., 1985: Submillimeter, millimeter, and microwave spectral line catalog, Appl. Optics 24, 2235–2240.Google Scholar
  19. Proffitt, M. H., Fahey, D. W., Kelly, K. K., and Tuck, A. F., 1989: High-latitude ozone loss outside the Antarctic ozone hole, Nature 342, 233–237.Google Scholar
  20. Rinsland, C. P., Gunson, M. R., Abrams, M. C., Lowes, L. L., Zander, R., Mahieu, E., Goldman, A., and Irion, F. W., 1995: April 1993 Arctic profiles of stratospheric HCl, ClONO2, and CCl2F2 from atmospheric trace molecule spectroscopy/ATLAS 2 infrared solar occultation spectra, J. Geophys. Res. 100, 14,019–14,027.Google Scholar
  21. Salawitch, R. J., Wofsy, S. C., Wennberg, P. O., Cohen, R. C., Anderson, J. G., Fahey, D. W., Gao, R. S., Keim, E. R., Woodbridge, E. L., Stimpfle, R. M., Koplow, J. P., Kohn, D. W., Webster, C. R., May, R. D., Pfister, L., Gottlieb, E.W., Michelsen, H. A., Yue, G. K., Wilson, J. C., Brock, C. A., Jonsson, H. H., Dye, J. E., Baumgardner, D., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Elkins, J. E., Dutton, G. S., Hintsa, E. J., Dessler, A. E., Weinstock, E. M., Kelly, K. K., Boering, K. A., Daube, B. C., Chan, K. R., and Bowen, S.W., 1994: The distribution of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere: Implications for changes in O3 due to emission of NOy from supersonic aircraft, Geophys. Res. Lett. 21, 2547–2550.Google Scholar
  22. Schmidt, U., Bauer, R., Khedim, A., Klein, E., Kulessa, G., and Schiller, C., 1991: Profile observations of long-lived trace gases in the Arctic vortex, Geophys. Res. Lett. 18, 767–770.Google Scholar
  23. Schmidt, U., Bauer, R., Engel, A., Borchers, R., and Lee, J., 1994: The variation of available chlorine, Cly, in the Arctic polar vortex during EASOE, Geophys. Res. Lett. 21, 1215–1218.Google Scholar
  24. Schmidt, U. and Khedim, A., 1991: In situmeasurements of carbon dioxide in the winter Arctic vortex and at mid latitudes: An indicator of the ‘age’ of stratospheric air, Geophys. Res. Lett. 18, 763–766.Google Scholar
  25. Schmidt, U., Kulessa, G., Klein, E., Röth, E.-P., Fabian, P., and Borchers, R., 1987: Intercomparison of balloon-borne cryogenic whole air samplers during the MAP/GLOBUS 1983 campaign, Planet. Space Sci. 35, 647–656.Google Scholar
  26. Schoeberl, M. R., Lait, L. R., Newman, P. A., and Rosenfield, J. E., 1992: The structure of the polar vortex, J. Geophys. Res. 97, 7859–7882.Google Scholar
  27. Solomon, S., 1990: Progress towards a quantitative understanding of Antarctic ozone depletion, Nature 347, 347–354.Google Scholar
  28. Stachnik, R. A., Hardy, J. C., Tarsala, J. A., Waters, J.W., Erickson, N. R., 1992a: Submillimeterwave heterodyne measurements of stratospheric ClO, HCl, O3 and HO2: first results, Geophys. Res. Lett. 19, 1931–1934.Google Scholar
  29. Stachnik, R. A., Hardy, J. C., Tarsala, J. A., and Waters, J. W., 1992b: Balloon-borne submillimeterwave stratospheric measurements, in Optical Methods in Atmospheric Chemistry, SPIE Vol. 1715, pp. 433–440.Google Scholar
  30. Stimpfle, R. M., Koplow, J. P., Cohen, R. C., Kohn, D. W., Wennberg, P. O., Judah, D. M., Toohey, D. W., Avallone, L. M., Anderson, J. G., Salawitch, R. J., Woodbridge, E. L., Webster, C. R., May, R. D., Proffitt, M. H., Aiken, A., Margitan, J., Loewenstein, M., Podolske, J. R., Pfister, L., and Chan, K. R., 1994: The response of the ClO radical concentrations to variations in NO2 radical concentrations in the lower stratosphere, Geophys. Res. Lett. 21, 2543–2546.Google Scholar
  31. Stolarski, R. S., Bloomfield, P., and McPeters, R. D., 1991: Total ozone trends deduced from Nimbus 7 TOMS data, Geophys. Res. Lett. 18, 1015–1018.Google Scholar
  32. Toohey, D. W., Avallone, L. M., Lait, L. R., Newman, P. A., Schoeberl, M. R., Fahey, D. W., Woodbridge, E. L., and Anderson, J. G., 1993: The seasonal evolution of reactive chlorine in the northern hemisphere stratosphere, Science 261, 1134–1136.Google Scholar
  33. Toumi, R., Jones, R. L., and Pyle, J. A., 1993: Stratospheric ozone depletion by ClONO2 photolysis, Nature 365, 37–39.Google Scholar
  34. Tuck, A. F., Webster, C. R., May, R. D., Scott, D. C., Hovde, S. J., Elkins, J.W., and Chan, K. R., 1995: Time and temperature dependence of fractional HCl abundances from airborne data in the southern hemisphere during 1994, Faraday Discuss. 100/22.Google Scholar
  35. Waters, J. W., Froideveaux, L., Read, W. G., Manney, G. L., Elson, L. S., Flower, D. A., Jarnot, R. F., and Harwood, R. S., 1993: Stratospheric ClO and ozone from the microwave limb sounder on the upper atmosphere research satellite, Nature 362, 597–602.Google Scholar
  36. Webster, C. R., May, R. D., Jaeglé, L., Hu, H., Sander, S. P., Gunson, M. R., Toon, G. C., Russell III, J. M., Stimpfle, R. M., Koplow, J. P., Salawitch, R. J., and Michelsen, H. A., 1994: Hydrochloric acid and the chlorine budget of the lower stratosphere, Geophys. Res. Lett. 21, 2575–2578.Google Scholar
  37. Webster, S. R., May, R. D., Toohey, D. W., Avallone, L. M., Anderson, J. G., Newman, P., Lait, L., Schoeberl, M. R., Elkins, J.W., and Chan, K. R., 1993: Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science 261, 1130–1134.Google Scholar
  38. Wege, K. and Claude, H., 1994: On a period with very low ozone concentrations within the lower stratosphere, Geophys. Res. Lett. 21, 1395–1398.Google Scholar
  39. WMO, Scientific Assessment of Ozone Depletion: 1991, 1991: Report No. 25, World Meteorological Organisation, Geneva, Switzerland.Google Scholar
  40. WMO, Scientific Assessment of Ozone Depletion: 1994, 1994: Report No. 37, World Meteorological Organisation, Geneva, Switzerland.Google Scholar
  41. Zander, R., Gunson, M. R., Foster, J. C., Rinsland, C. P., and Namkung, J., 1990: Stratospheric ClONO2, HCl, and HF concentration profiles derived from Atmospheric Trace Molecule Spectroscopy Experiment Spacelab 3 observation: an update, J. Geophys. Res. 95, 20510–20525.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Andreas Engel
    • 1
  • Ulrich Schmidt
    • 1
  • Robert a. Stachnik
    • 2
  1. 1.Forschungszentrum JülichInstitut für Stratosphärische ChemieJülichGermany
  2. 2.Jet Propulsion LaboratoryPasadenaU.S.A

Personalised recommendations