Advertisement

Plant Molecular Biology

, Volume 33, Issue 3, pp 523–536 | Cite as

Molecular cloning of the bark and seed lectins from the Japanese pagoda tree (Sophora japonica)

  • Els J.M. Van Damme
  • Annick Barre
  • Pierre Rougé
  • Willy J. Peumans
Article

Abstract

cDNA clones encoding the bark and seed lectins from Sophora japonica were isolated and their sequences analyzed. Screening of a cDNA library constructed from polyA RNA isolated from the bark resulted in the isolation of three different lectin cDNA clones. The first clone encodes the GalNAc-specific bark lectin which was originally described by Hankins et al. whereas the other clones encode the two isoforms of the mannose/glucose-specific lectin reported by Ueno et al.. Molecular cloning of the seed lectin genes revealed that Sophora seeds contain only a GalNAc-specific lectin which is highly homologous to though not identical with the GalNAc-specific lectin from the bark. All lectin polypeptides are translated from mRNAs of ca. 1.3 kb encoding a precursor carrying a signal peptide. In the case of the mannose/glucose-specific bark lectins this precursor is post-translationally processed in two smaller peptides. Alignment of the deduced amino acid sequences of the different clones revealed striking sequence similarities between the mannose/glucose-binding and the GalNAc-specific lectins. Furthermore, there was a high degree of sequence homology with other legume lectins which allowed molecular modelling of the Sophora lectins using the coordinates of the Pisum sativum, Lathyrus ochrus and Erythrina corallodendron lectins.

bark proteins cDNA cloning lectin Sophora japonica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baba K, Ogawa M, Nagano A, Kuroda H, Sumiya K: Developmental changes in the bark lectin of Sophora japonica L. Planta 183: 462–470 (1991).Google Scholar
  2. 2.
    Bourne Y, Abergel C, Cambillau C, Frey M, Rougé P, Fontecilla-Camps JC: X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J Mol Biol 214: 571–584 (1990).Google Scholar
  3. 3.
    Bourne Y, Roussel A, Frey M, Rougé P, Fontecilla-Camps JC, Cambillau C: Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of themonosaccharide binding site. Proteins 8: 365–376 (1990).Google Scholar
  4. 4.
    Derewenda Z, Yariv J, Helliwell JR, Kalb (Gilboa) AJ, Dodson EJ, Paiz MZ, Wang T, Campbell J: The structure of the saccharide-binding site of concanavalin A. EMBO J 8: 2189–2193 (1989).Google Scholar
  5. 5.
    Dessen A, Gupta D, Sabesan S, Brewer CF, Sacchettini JC: X-ray crystal structure of the soybean agglutinin cross-linked with a biantennary analog of the blood group I carbohydrate antigen. Biochemistry 34: 4933–4942 (1995).Google Scholar
  6. 6.
    Diaz C, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW: Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581 (1989).Google Scholar
  7. 7.
    Gaboriaud C, Bissery V, Benchetrit T, Mornon JP: Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 224: 149–155 (1987).Google Scholar
  8. 8.
    Hankins CN, Kindinger J, Shannon LM: The lectins of Sophora japonica. I. Purification, properties, and N-terminal sequences of two lectins from leaves. Plant Physiol 83: 825–829 (1987).Google Scholar
  9. 9.
    Hankins CN, Kindinger JI, Shannon LM: The lectins of Sophora japonica. II. Purification, properties, and N-terminal amino acid sequences of five lectins from bark. Plant Physiol 86: 67–70 (1988).Google Scholar
  10. 10.
    Hopp TP, Woods KR: Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78: 3824–3828 (1981).Google Scholar
  11. 11.
    Imberty A, Casset F, Gegg CV, Etzler ME, Perez S: Molecular modelling of the Dolichos biflorus seed lectin and its specific interactions with carbohydrates: alpha-D-N-acetylgalactosamine, Forssman disaccharide and blood group A trisaccharide. Glycoconjugate J 11: 400–413 (1994).Google Scholar
  12. 12.
    Janin J: Surface and inside volumes in globular proteins. Nature 277: 491–492 (1979).Google Scholar
  13. 13.
    Karplus PA, Schulz GE: Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212–213 (1985).Google Scholar
  14. 14.
    Kyte J, Doolittle RF:Asimplemethod for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).Google Scholar
  15. 15.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).Google Scholar
  16. 16.
    Lemesle-Varloot L, Henrissat B, Gaboriaud C, Bissery V, Morgat A, Mornon JP: Hydrophobic cluster analysis: procedure to derive structural and functional information from 2-Drepresentation of protein sequences. Biochimie 72: 555–574 (1990).Google Scholar
  17. 17.
    Loris R, Casset F, Bouckaert J, Pletinckx J, Dao-Thi M-H, Poortmans F, Imberty A, Perez S, Wyns L:Themonosaccharide binding site of lentil lectin: an X-ray and molecular modelling study. Glycoconjugate J 11: 507–517 (1994).Google Scholar
  18. 18.
    Maddison WP, Maddison DR: MacClade: Analysis of phylogeny and character evolution, Version 3.0. Sinauer Associates, Sunderland, MA (1992).Google Scholar
  19. 19.
    Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY (1982).Google Scholar
  20. 20.
    Mierendorf RC, Pfeffer D: Direct sequencing of denatured plasmid DNA. Meth Enzymol 152: 556–562 (1987).Google Scholar
  21. 21.
    Mirkov TE, Chrispeels MJ: Mutation of Asn128 to Asp of Phaseolus vulgaris leucoagglutinin (PHA-L) eliminates carbohydrate-binding and biological activity. Glycobiology 3: 581–587 (1993).Google Scholar
  22. 22.
    Nsimba-Lubaki M, Peumans WJ: Seasonal fluctuations of lectins in barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant Physiol 80: 747–751 (1986).Google Scholar
  23. 23.
    Parker JMR, Guo D, Hodges RS: New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25: 5425–5432 (1986).Google Scholar
  24. 24.
    Peumans WJ, Nsimba-Lubaki M, Broekaert WF, Van Damme EJM: Are bark lectins of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia) storage proteins? In: Shannon LM, Chrispeels MJ (eds), Molecular biology of seed storage proteins and lectins, pp. 53–63. The American Society of Plant Physiologists, Waverly Press, Baltimore, MD (1986).Google Scholar
  25. 25.
    Peumans WJ, Van Damme EJM: Lectins as plant defense proteins. Plant Physiol 109: 347–352 (1995).Google Scholar
  26. 26.
    Poretz RP, Riss H, Timberlake JW, Chien S: Purification and properties of the hemagglutinin from Sophora japonica seeds. Biochemistry 13: 250–256 (1974).Google Scholar
  27. 27.
    Prasthofer T, Phillips SR, Suddath FL, Engler JA: Design, expression, and crystallization of recombinant lectin from the garden pea (Pisum sativum). J Biol Chem 264: 6793–6796 (1989).Google Scholar
  28. 28.
    Rini JM, Hardman KD, Einspahr H, Suddath FL, Carver JP: X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 Å resolution. J Biol Chem 268: 10126–10132 (1993).Google Scholar
  29. 29.
    Sanger F, Nicklen S, Coulson AR: DNAsequencing with chain terminating inhibitors. ProcNatlAcad Sci USA 74: 5463–5467 (1977).Google Scholar
  30. 30.
    Shaanan B, Lis H, Sharon N: Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science 254: 862–866 (1991).Google Scholar
  31. 31.
    Shannon LM, Herman E, Hankins C: Structural relationships among leaf and seed lectins. In: Shannon LM, Chrispeels MJ (eds) Molecular Biology of Seed Storage Proteins and Lectins, pp. 73–83. The American Society of Plant Physiologists, Waverly Press, Baltimore, MD (1986).Google Scholar
  32. 32.
    Sharon N, Lis H: Legume lectins: a large family of homologous proteins. FASEB J 4: 3198–3208 (1990).Google Scholar
  33. 33.
    Thornton JM, Edwards MS, Taylor WR, Barlow DJ: Location of continuous antigenic determinants in the protruding regions of proteins. EMBO J 5: 409–413 (1986).Google Scholar
  34. 34.
    Ueno M, Ogawa H, Matsumoto I, Seno N: A novel mannosespecific and sugar specifically aggregatable lectin fromthe bark of the Japanese pagoda tree (Sophora japonica). J Biol Chem 266: 3146–3153 (1991).Google Scholar
  35. 35.
    Van Damme EJM, Goldstein IJ, Vercammen G, Vuylsteke J, Peumans WJ: Lectins of members of the Amaryllidaceae are encoded by multigene families which show extensive homology. Physiol Plant 86: 245–252 (1992).Google Scholar
  36. 36.
    VanDamme EJM, Smeets K, Torrekens S, Van Leuven F, Goldstein IJ, Peumans WJ: The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur J Biochem 206: 413–420 (1992).Google Scholar
  37. 37.
    Van Damme EJM, Peumans WJ: Cell-free synthesis of lectins. In: Gabius H-J, Gabius S (eds) Lectins and Glycobiology, pp. 458–468. Springer-Verlag, Berlin/Heidelberg/New York (1993).Google Scholar
  38. 38.
    Van Damme EJM, Barre A, Bemer V, Rougé P, Van Leuven F, Peumans WJ: A lectin and a lectin-related protein are the two most prominent proteins in the bark of yellowwood (Cladrastis lutea). Plant Mol Biol 29: 579–598 (1995).Google Scholar
  39. 39.
    Van Damme EJM, Barre A, Smeets K, Torrekens S, Van Leuven F, Rougé P, Peumans WJ: The bark of Robinia pseudoacacia contains a complex mixture of lectins. Plant Physiol 107: 833–843 (1995).Google Scholar
  40. 40.
    van Eijsden RR, Hoedemaeker FJ, Diaz CL, Lugtenberg BJJ, de Pater BS, Kijne JW: Mutational analysis of pea lectin. Replacement of Asn125 by Asp in the monosaccharide-binding site eliminates mannose/glucose binding activity. Plant Mol Biol 20: 1049–1058 (1992).Google Scholar
  41. 41.
    van Eijsden RR: Mutational analysis of pea lectin. Ph.D. thesis, Rijksuniversiteit, Leiden, 133 pp. (1994).Google Scholar
  42. 42.
    van Eijsden RR, de Pater BS, Kijne JW: Mutational analysis of the sugar-binding site of pea lectin. Glycoconjugate J 11: 375–380 (1994).Google Scholar
  43. 43.
    von Heijne G: A method for predicting signal sequence cleavage sites. Nucl Acids Res 11: 4683–4690 (1986).Google Scholar
  44. 44.
    Wetzel S, Demmers C, Greenwood JS: Seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods. Planta 178: 275–281 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Els J.M. Van Damme
    • 1
  • Annick Barre
    • 2
  • Pierre Rougé
    • 2
  • Willy J. Peumans
    • 1
  1. 1.Laboratory for Phytopathology and Plant ProtectionKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Institut de Pharmacologie et Biologie Structurale, UPR CNRS 9062Université Paul SabatierToulouse CedexFrance

Personalised recommendations