Plant Molecular Biology

, Volume 35, Issue 1–2, pp 219–229 | Cite as

Transposon tagging in rice

  • Takeshi Izawa
  • Tohru Ohnishi
  • Toshitsugu Nakano
  • Nobuhiro Ishida
  • Hiroyuki Enoki
  • Hisako Hashimoto
  • Kimiko Itoh
  • Rie Terada
  • Chuanyn Wu
  • Chikara Miyazaki
  • Tomoko Endo
  • Shigeru Iida
  • Ko Shimamoto
Article

Abstract

To develop an efficient gene isolation method for rice we introduced the maize Ac/Ds system into rice. Extensive analysis of their behavior in rice for several generations indicated that Ac and Ds in the presence of Ac transposase gene actively transpose in rice. A wide spectrum of mutations affecting growth, morphogenesis, flowering time and disease resistance have been obtained in the population carrying Ac/Ds and some of them were genetically analyzed. Main efforts are currently being made to isolate genes responsible these mutations. In addition, a number of Ac/Ds were mapped on chromosomes and mapped elements will be used in the future for directed tagging of genes with known chromosomal positions.

rice Ac/Ds transposon gene isolation disease resistance flowering time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A: Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715–717 (1993).Google Scholar
  2. 2.
    Altmann T, Felix G, Jessop A, Kauschmann A, Uwer U, Pena-Cortes H, Wilmitzer L: Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. Mol Gen Genet 247: 646–652 (1995).Google Scholar
  3. 3.
    Baker B, Coupland G, Fedoroff NV, Starlinger P, Schell J: Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6: 1547–1554 (1987).Google Scholar
  4. 4.
    Baker B, Schell J, Lörz H, Fedoroff NV: Transposition of the maize controlling element Activator in tobacco. Proc Natl Acad Sci USA 83: 4844–4848 (1986).Google Scholar
  5. 5.
    Bancroft I, Dean C: Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134: 1221–1229 (1993).Google Scholar
  6. 6.
    Bancroft I, Dean C: Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol Gen Genet 240: 65–72 (1993).Google Scholar
  7. 7.
    Bancroft I, Jones JDG, Dean C: Heterologous transposon tagging of the DRL locus in Arabidopsis. Plant Cell 5: 631–638 (1993).Google Scholar
  8. 8.
    Behrens U, Fedoroff N, Laird A, Muller-Neumann M, Starlinger P, Yoder J: Cloning of Zea mays controlling element Ac from the wx-m7 allele. Mol Gen Genet 194: 346–347 (1984).Google Scholar
  9. 9.
    Bhatt AM, Page T, Lawson EJR, Lister C, Dean C: Use of Ac as an insertional mutagen in Arabidopsis. Plant J 9: 935–945 (1996).Google Scholar
  10. 10.
    Brettell RIS, Dennis ES: Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation. Mol Gen Genet 229: 365–372 (1991).Google Scholar
  11. 11.
    Carrol BJ, Klimyuk VI, Thomas CM, Bishop GJ, Harrison K, Scofield SR, Jones JDG: Germinal transposition of the maize element Dissociation from T-DNA loci in tomato. Genetics 139: 407–420 (1995).Google Scholar
  12. 12.
    Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK: Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378 (1993).Google Scholar
  13. 13.
    Dean C, Sjodin C, Page T, Jones J, Lister C: Behavior of the maize transposable element Ac in Arabidopsis thaliana. Plant J 2: 69–81 (1992).Google Scholar
  14. 14.
    Dooner HK, Keller J, Haper E, Ralston E: Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3: 473–482 (1991).Google Scholar
  15. 15.
    Döring HP, Starlinger P: Barbara McClintock's controlling elements: now at the DNA level. Cell 39: 253–259 (1984).Google Scholar
  16. 16.
    Fedoroff NV, Furtek DB, Nelson OE: Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator(Ac). Proc Natl Acad Sci USA 81: 3825–3829 (1984).Google Scholar
  17. 17.
    Fedoroff NV, Wessler S, Shure M: Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242 (1983).Google Scholar
  18. 18.
    Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K: Introduction and transposition of the maize transposable element Ac in rice (Oryza sativaL.). Mol Gen Genet 227: 391–396 (1991).Google Scholar
  19. 19.
    Izawa T, Shimamoto K: Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1: 95–99 (1996).Google Scholar
  20. 20.
    James Jr DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK: Directed tagging of the Arabidopsis FATTY ACID ELONGATION 1(FAE1) gene with the maize transposon Activator. Plant Cell 7: 309–319 (1995).Google Scholar
  21. 21.
    Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793 (1994).Google Scholar
  22. 22.
    Jones JDG, Carland F, Lim E, Ralston E, Dooner HK: Preferential transposition of themaize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707 (1991).Google Scholar
  23. 23.
    Kiyosawa S: Establishment of differential varieties for pathogenicity test of rice blast fungus. Rice Genet Newsl 1: 95–97 (1984).Google Scholar
  24. 24.
    Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG: The L6gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N.Plant Cell 7: 1195–1206 (1995).Google Scholar
  25. 25.
    Lawrence G, Finnegan J, Ellis J: Instability of the L6 gene for rust resistance in flax is correlated with the presence of a linked Ac element. Plant J 4: 659–669 (1993).Google Scholar
  26. 26.
    Lawson EJR, Scofield SR, Sjodin C, Jones JDG, Dean C: Modification of the 50 untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol Gen Genet 245: 608–615 (1994).Google Scholar
  27. 27.
    Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P, Coupland G: The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci USA 90: 10370–10374 (1993).Google Scholar
  28. 28.
    Peschke VM, Philips RL, Gengenbach BG: Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807 (1987).Google Scholar
  29. 29.
    Peschke VM, Phillips RL: Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81: 90–9 (1987).Google Scholar
  30. 30.
    Schmidt R, Willmitzer L: Themaize autonomous element Activator(Ac) shows a minimal germinal excision frequency of 0.2%- 0.5%in transgenic Arabidopsis thaliana plants. Mol Gen Genet 220: 17–24 (1989).Google Scholar
  31. 31.
    Scofield SR, Harrison K, Nurrish SJ, Jones JDG: Promoter fusions to the Activator transosase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4: 573–582 (1992).Google Scholar
  32. 32.
    Shimamoto K, Terada R, Izawa T, Fujimoto H: Fertile transgenic rice plant regenerated from transformed protoplasts. Nature 338: 274–276 (1989).Google Scholar
  33. 33.
    Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada R, Inagaki Y, Iida S: Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol Gen Genet 239: 354–360 (1993).Google Scholar
  34. 34.
    Shimamoto K: The molecular biology of rice. Science 270: 1772–1773 (1995).Google Scholar
  35. 35.
    Shimamoto K, Ohnishi T, Kume Y, Hashimoto H, Wu C, Izawa T: Toward molecular isolation of the blast resistance gene in rice by the maize Ac/Ds elements. In: Mills D, Kunoh H, Keen N, Mayama S (eds) Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction, pp. 177–183. APS Press, St. Paul, MN (1996).Google Scholar
  36. 36.
    Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner-J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806 (1995).Google Scholar
  37. 37.
    Sundaresan V: Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plant Sci 1: 184–190 (1996).Google Scholar
  38. 38.
    Swinburne J, Balcells L, Scofield SR, Jones JDG, Coupland G: Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell 4: 583–595 (1992).Google Scholar
  39. 39.
    Walbot V: Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Plant Mol Biol 43: 49–82 (1992).Google Scholar
  40. 40.
    Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B: The product of the tobacco mosaic virus resistance gene N: similarity to Toee and the interleukin-1 receptor. Cell 78: 1–20 (1994).Google Scholar
  41. 41.
    Yamagata H: Heading-time genes of rice, E1, E2 and E3. Rice Genet Newsl 1: 100–101 (1984).Google Scholar
  42. 42.
    Yokoo M, Kikuchi F: Multiple allelism of the locus controlling heading time of rice, detected using the close linkage with blast-resistance. Jpn J Breed 27: 123–130 (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Takeshi Izawa
    • 1
    • 2
  • Tohru Ohnishi
    • 1
  • Toshitsugu Nakano
    • 1
  • Nobuhiro Ishida
    • 1
  • Hiroyuki Enoki
    • 1
  • Hisako Hashimoto
    • 2
  • Kimiko Itoh
    • 2
  • Rie Terada
    • 2
  • Chuanyn Wu
    • 2
  • Chikara Miyazaki
    • 3
  • Tomoko Endo
    • 3
  • Shigeru Iida
    • 3
  • Ko Shimamoto
    • 1
  1. 1.Laboratory of Plant Molecular GeneticsNara Institute of Science and TechnologyIkomaJapan
  2. 2.Plantech Research InstituteAoba-ku, YokohamaJapan
  3. 3.Department of Biological Science and TechnologyScience University of TokyoYamazaki, NodaJapan

Personalised recommendations