, Volume 37, Issue 3, pp 203–226 | Cite as

Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions an experimental comparison of freshwater and brackish-marine systems

  • Anneli Gunnars
  • Sven Blomqvist


Comparative, experimental studies on sediment cores from freshwater andbrackish-marine conditions reveal major differences in the benthic exchangeof phosphate across the sediment-water interface when shifting from anoxicto oxic conditions. The flux of phosphate to the sediment during this shiftwas found to be mediated mainly by scavenging from newly formed colloidalferric oxohydroxide. The capacity of the iron-rich particles to scavengephosphorus depended on the stoichiometric ratio between dissolved iron andphosphorus built up in the supernatant water during reducing conditions. Thefreshwater system was characterized by high iron to phosphorus ratios in thedissolved phase and thus most of the phosphate was incorporated into thecolloidal iron oxohydroxide during the oxygenation. In contrast, the marinesystems reached lower iron to phosphorus ratios during the anoxic period whichresulted in less efficient phosphate scavenging. Consequently, significantamounts of phosphate remained dissolved in the marine systems after the changeto oxic conditions, possibly increasing the proportion of phosphate recycledto the euphotic zone. Manganese showed a consistent redox-dependent behaviourin all the investigated systems, but interacted neither with phosphate norwith iron.

phosphate iron manganese sediment-water exchange limiting nutrients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ankar S & Elmgren R (1975) A survey of the benthic macro-and meiofauna of the Askö-Landsort area. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 239: 257–264Google Scholar
  2. Ankar S & Elmgren R (1976) The benthic macro-and meiofauna of the Askö-Landsort area (northen Baltic proper)-A stratified random sampling survey. Contr. Askö Lab., Univ. Stockholm 11: 1–115Google Scholar
  3. Atkinson RJ, Posner AM & Quirk JP (1972) Kinetics of isotopic exchange of phosphate at the α-FeOOH-aqueous solution interface. J. Inorg. Nucl. Chem. 34: 2201–2211Google Scholar
  4. Atkinson RJ, Parfitt RL & Smart RSC (1974) Infra-red study of phosphate adsorption on goethite. J. Chem. Soc. Faraday Trans. I, 70: 1472–1479Google Scholar
  5. Balzer W (1980) Redox dependent processes in the transition from oxic to anoxic conditions: An in situ study concerning remineralization, nutrient release and heavy metal solubilization. In: Freeland HJ, Farmer DM & Levings CD (Eds) Fjord Oceanography. NATO Conf. Ser. IV, Marine Sciences Vol 4 (pp 659–665). Plenum Publishing Corp., New YorkGoogle Scholar
  6. Balzer W (1982) On the distribution of iron and manganese at the sediment/water interface: thermodynamic vs. kinetic control. Geochim. Cosmochim. Acta 46: 1153–1161Google Scholar
  7. Balzer W (1984) Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Limnol. Oceanogr. 29: 1231–1246Google Scholar
  8. Balzer W, Grasshoff K, Dieckmann P, Haardt H & Petersohn U (1983) Redox-turnover at the sediment/water interface studied in a large bell jar system. Oceanol. Acta 6: 337–344Google Scholar
  9. Batley GE & Gardner D (1977) Sampling and storage of natural waters for trace metal analysis. Wat. Res. 11: 745–756Google Scholar
  10. Berner, RA (1984) Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48: 605–615.Google Scholar
  11. Björnbom S (1981) Description to the Quaternary map Strängnäs SO (In Swedish with English summary). In: Swedish Geological Survey Ser. Ae, No 39 (pp 21–72). Uppsala, SwedenGoogle Scholar
  12. Björnbom S (1985) Description to the Quaternary map Strängnäs NO(In Swedishwith English summary). In: Swedish Geological Survey Ser. Ae, No 68 (pp 21–48). Uppsala, SwedenGoogle Scholar
  13. Blomqvist S (1985) Reliability of core sampling of soft bottom sediment-an in situ study. Sedimentology 32: 605–612Google Scholar
  14. Blomqvist S & Abrahamsson B (1985) An improved Kajak-type gravity core sampler for soft bottom sediments. Schweiz. Z. Hydrol. 47: 81–84Google Scholar
  15. Blomqvist S, Hjellström K & Sjösten A (1993) Interference from arsenate, fluoride and silicate when determining phosphate in water by the phosphoantimonylmolybdenum blue method. Internat. J. Environ. Anal. Chem. 54: 31–43Google Scholar
  16. Bolin B & Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25: 58–62Google Scholar
  17. Borg H, Gustavsson I, Gillis J & Bengtsson M (1984) Rekommendationer för provtagning och analys av spårmetaller i naturvatten. National Swedish Environment Protection Board, PM 1918. Solna, Sweden. 40 ppGoogle Scholar
  18. Boström B, Jansson M & Forsberg C (1982) Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59Google Scholar
  19. Boström B, Andersen JM, Fleischer S & Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244Google Scholar
  20. Capone DG & Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in an aerobic carbon catabolism. Limnol. Oceanogr. 33: 725–746Google Scholar
  21. Caraco NF (1988) What is the mechanism behind the seasonal switch between N and P limitation in estuaries? Can. J. Fish. Aquat. Sci. 45: 381–382Google Scholar
  22. Caraco NF, Cole JJ & Likens GE (1989) Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318Google Scholar
  23. Caraco NF, Cole JJ & Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochem. 9: 277–290Google Scholar
  24. Caraco NF, Cole JJ & Likens GE (1991) A cross-system study of phosphorus release from lake sediments. In: Cole JJ, Lovett G & Findlay S (Eds) Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories (pp 241–258). Springer-Verlag, New YorkGoogle Scholar
  25. Caraco NF, Cole JJ & Likens GE (1993) Sulfate control of phosphorus availability in lakes. A test and re-evaluation of Hasler and Einsele's model. Hydrobiologia 253: 275–280Google Scholar
  26. Chapnik SD, Moore WS & Nealson KH (1982) Microbially mediated manganese oxidation in a freshwater lake. Limnol. Oceanogr. 27: 1004–1014Google Scholar
  27. Cederwall H (1990) Övervakning av mjukbottenfauna i Östersjöns kustområden. In: Rapport från verksamheten 1989. Swedish Environment Protection Agency, Report 3796. Solna, Sweden. 65 ppGoogle Scholar
  28. Cronström A (1988) Himmerfjärdsanläggningen-från idé till verklighet. Moraberg Förlags AB, Södertälje, Sweden. 267 ppGoogle Scholar
  29. Davison W & Seed G (1983) The kinetics of the oxidation of ferrous iron in sythetic and natural waters. Geochim. Cosmochim. Acta 47: 67–79Google Scholar
  30. Davison W & Tipping E (1984) Treading in Mortimer's footsteps: the geochemical cycling of iron and manganese in Esthwaite Water. In: Freshwater Biological Association 52nd Annual Report (pp 91–101). Ambleside, Cumbria, UKGoogle Scholar
  31. Diem D & Stumm W (1984) Is dissolved Mn2+ being oxidized by O2in abscence of Mnbacteria or surface catalysts? Geochim. Cosmochim. Acta 48: 1571–1573Google Scholar
  32. Ehrlich HL (1982) Enhanced removal of Mn2+ from seawater by marine sediments and clay minerals in the presence of bacteria. Can. J. Microbiol. 28: 1389–1395Google Scholar
  33. Einsele W(1936) Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrofen See. Arch. Hydrobiol. 29: 664–686Google Scholar
  34. Einsele W (1938) Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387Google Scholar
  35. Einsele W & Vetter H (1938) Untersuchungen über die Entwicklung der physikalischen und chemischen Verhältnisse im Jehreszyklus in einem mäßig eutrophen See (Schleinsee bei Langenargen). Intern. Revue ges. Hydrobiol. Hydrogr. 36: 285–324Google Scholar
  36. Elderfield H, LuedtkeN, McCaffreyRJ & Bender M (1981)Benthic flux studies in Narragansett Bay. Am. J. Sci. 281: 768–787Google Scholar
  37. Ellis-Evans JC & Lemon ECG (1989) Some aspects of iron cycling in maritime Antarctic lakes. Hydrobiologia 172: 149–164Google Scholar
  38. Engqvist A & Omstedt A (1992)Water exchange and density structure in a multi-basin estuary. Cont. Shelf Res. 9: 1003–1026Google Scholar
  39. Frevert T (1979) The pe redox concept in natural sediment-water systems; its role in controlling phosphorus relaese from lake sediments. Arch. Hydrobiol. Suppl. 55: 278–297Google Scholar
  40. Gächter R & Meyer JS (1993) The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121Google Scholar
  41. Gächter R, Meyer JS & Mares A (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558Google Scholar
  42. Gallagher JB (1985) The influence of iron and manganese on nutrient cycling in shallow freshwater Antarctic lakes. In: Siegfried WR, Condy PR & Laws RM (Eds) Antarctic Nutrient Cycles and Food Webs (pp 234–237). Springer-Verlag, BerlinGoogle Scholar
  43. Golterman HL (1995a) Theoretical aspects of the adsorption of ortho-phophate onto ironhydroxide. Hydrobiologia 315: 59–68Google Scholar
  44. Golterman HL (1995b) The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297: 43–45Google Scholar
  45. Granéli E, Wallström K, Larsson U, Granéli W & Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19: 142–151Google Scholar
  46. Gunnars A (1990) Exchange of phosphorus and silicon over the sediment-water interface during positive redox-turnover-the role of iron and manganese. Chem. Commun. No. 4, Univ. Stockholm, Sweden. 51 ppGoogle Scholar
  47. Hallberg RO, Bågander LE & Engvall A-G(1976) Dynamics of phosphorus, sulfur and nitrogen at the sediment-water interface. In: Nriagu JO (Ed) Environmental Biogeochemistry, Vol 1. Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles (pp 295-308). Ann Arbor Science Publ., Ann ArborGoogle Scholar
  48. Hawke D, Carpenter PD & Hunter KA (1989) Competitive adsorption of phosphate on goethite in marine electrolytes. Environ. Sci. Technol. 23: 187–191Google Scholar
  49. Heaney SI, Smyly WJP & Talling JF (1986) Interactions of physical, chemical and biological processes in depth and time within a productive English lake during summer stratification. Intern. Revue ges. Hydrobiol. 71: 441–494Google Scholar
  50. Hecky RE & Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: Areview of recent evidence on the effects of enrichment. Limnol.Oceanogr. 33: 796–822Google Scholar
  51. Hellström BG & Knutsson P (1983) Pollution quantities in domestic wastewater from the Stockholm region (In Swedish with English summary). Vatten 39: 265–271Google Scholar
  52. Herdendorf CE (1982) Large lakes of the world. J. Great Lakes Res. 8: 379–412Google Scholar
  53. Hjellström K (1987) Sediment-water dynamics of inorganic phosphate and silicate during summer stratification in a sewage treatment plant recipient area of the Baltic Sea. Chem. Commun. No. 9, Univ. Stockholm, Sweden. 33 ppGoogle Scholar
  54. Holm NG (1978) Phosphorus exchange through the sediment-water interface. Mechanism studies of dynamic processes in the Baltic Sea. Contrib. Microbial Geochem. No 3, Ph.D. Thesis, Dept. Geology, Univ. Stockholm, Sweden. 149 ppGoogle Scholar
  55. Holm NG & Lindström M (1978) The iron-phosphate relation in sediment-water exchange mechanisms. In: Holm NG (Ed) Phosphorus exchange through the sediment-water interface. Mechanism studies of dynamic processes in the Baltic Sea (pp 111–149). Contrib. Microbial Geochem. No. 3, Ph.D. Thesis, Dept. Geology, Univ. Stockholm, SwedenGoogle Scholar
  56. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Syst. 19: 89–110Google Scholar
  57. Howarth RW, Jensen HS, Marino R & Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (Ed) Phosphorus in the global environment. Transfers, cycles and management (pp 323–345). John Wiley & Sons, ChichesterGoogle Scholar
  58. Ichinose N, Adachi K, Mitsui M, Shimizu C, Okamoto K, Kurokura H, Inui T & Tamura H (1988) Seasonal movements of phosphorus and iron compounds, dissolved hydrogen sulfide, and others in anoxic seawater at Lake Hamana. Bull. Chem. Soc. Jap. 61: 3153–3158Google Scholar
  59. Ingri J, Löfvendahl R & Boström K (1991) Chemistry of suspended particles in the southern Baltic Sea. Mar. Chem. 32: 73–87Google Scholar
  60. Johansson P (1993) Characterization of iron-rich colloids and their interaction with phosphate. Dept. Phys. Inorg. Struct. Chemistry, Stockholm Univ., Sweden. 45 ppGoogle Scholar
  61. Johansson S (1983) Annual dynamics and production of rotifers in an eutrophication gradient in the Baltic Sea. Hydrobiologia 104: 335–340Google Scholar
  62. Johansson S, Larsson U & Skärlund K (1992) Annual dynamics of Baltic Sea coastal zooplankton communities in relation to eutrophication. In: Johansson S, Regulating factors for coastal zooplankton communities structure in northen Baltic proper (Paper I). Ph.D. Thesis, Dept. Zoology, Stockholm Univ., SwedenGoogle Scholar
  63. Källqvist T (1988) Nitrogen or phosphorus-what is limiting nutrient in coastal areas? Examples from Norwegian fjords (In Swedish with English summary). Vatten 44: 11–18Google Scholar
  64. Kankaala P (1983) Resting eggs, seasonal dynamics and production of Bosmina longispina maritima(PE Müller) (Cladocera) in the northen Baltic proper. J. Plankton Res. 5: 53–69Google Scholar
  65. Kempe S, Diercks A-R, Liebezeit G & Prange A (1991) Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134-8 Leg 1, 1988). In: Izdar E & Murray JW (Eds) Black Sea Oceanography, NATO Adv. Sci. Inst. Ser. C, Vol 351, (pp 89–110). Kluwer Academic Publ., DordrechtGoogle Scholar
  66. King DW, Lounsbury HA, and Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29: 818–824Google Scholar
  67. Koroleff F (1983) Determination of phosphorus. In: Grasshoff K, Ehrhardt M & Kremling K (Eds) Methods of Seawater Analysis, 2nd ed. (pp 125–139). Verlag Chemie, WeinheimGoogle Scholar
  68. Kremling, K (1983) The behavior of Zn, Cd, Cu, Ni, Co, Fe and Mn in anoxic Baltic waters. Mar. Chem. 13: 87–108Google Scholar
  69. Kuhl, A (1974) Phosphorus. In: Stewart WDP (Ed) Algal Physiology and Biochemistry (pp 636–654). Blackwell Scientific Publ., OxfordGoogle Scholar
  70. Larsen DP, Schults DW & Malueg KW (1981) Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol. Oceanogr. 26: 740–753Google Scholar
  71. Larsson U (1988) Nitrogen and phosphorus as growth limiting substances in the sea (In Swedish with English summary). Vatten 44: 19–28Google Scholar
  72. Larsson U & Hagström O (1982) Fractionated phytoplankton primary production, exudat release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70Google Scholar
  73. Larsson U, Sjösten A & Johansson S (1991) Himmerfjärdsundersökningen. Rapport till SYVAB. Dept. Systems Ecology Tech. Report 7. Stockholm Univ., Sweden. 167 ppGoogle Scholar
  74. Lean DRS, McQueen DJ & StoryVA (1986) Phosphate transport during hypolimnetic aeration. Arch. Hydrobiol. 108: 269–280Google Scholar
  75. Lidén J (1983) A study of equilibrium reactions of Fe2+ during its diffusional transport through the anoxic hypolimnion of an ice covered lake. Schweiz. Z. Hydrol. 45: 411–429Google Scholar
  76. Lijklema L (1980) Interaction of ortophosphate with iron(III) and aluminum hydroxides. Environ. Sci. Technol. 14: 537–541Google Scholar
  77. Magaard L (1974) Wasserstandsschwankungen und Seegang. In: Magaard L & Rheinheimer G (Eds) Meereskunde der Ostsee (pp 67–75). Springer-Verlag, BerlinGoogle Scholar
  78. Magnusson B & Westerlund S (1980) The determination of Cd, Cu, Fe, Ni, Pb and Zn in Baltic Sea water. Mar. Chem. 8: 231–244Google Scholar
  79. Mayer LM, Liotta FP & Norton SA (1982) Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Wat. Res. 16: 1189–1196Google Scholar
  80. McQueen DJ, Lean DRS & Charlton MN (1986) The effects of hypolimnetic aeration on iron-phosphorus interactions. Wat. Res. 20: 1129–1135Google Scholar
  81. Milbrink G, Lundquist S & Pramsten H (1974) On the horizontal distribution of the profundal bottom fauna in a limited area of central Lake Mälaren, Sweden. Hydrobiologia 45: 509–541Google Scholar
  82. Millero FJ, Sotolongo S & Izagu`irre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51: 793–801Google Scholar
  83. Möller H (1969) Description of the geological map Stockholm SV. Description of the Quaternary deposits (In Swedish with English summary). In: Swedish Geological Survey Ser. Ae, No 4 (pp 41–125). Stockholm, SwedenGoogle Scholar
  84. Morgan JJ (1967) Chemical equilibria and kinetic properties ofmanganese in natural waters In: Faust SD & Hunter JV (Eds) Principles and applications of water chemistry (pp 561–624). John Wiley & and Sons, New YorkGoogle Scholar
  85. Morris AW & Bale AJ (1979) Effect of rapid precipitation of dissolved Mn in river water on estuarine Mn distribution. Nature 279: 318–319Google Scholar
  86. Morse JW, Millero FJ, Cornwell JC & Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci. Rev. 24: 1–42Google Scholar
  87. Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes: I and II J. Ecol. 29: 280–329Google Scholar
  88. Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes: III and IV. J. Ecol. 30: 147–201Google Scholar
  89. Nalewajko C & Lean DRS (1980) Phosphorus. In: Morris I (Ed) The Physiological Ecology of Phytoplankton (pp 235–258). Univ. California Press, BerkeleyGoogle Scholar
  90. Nealson KH & Ford J (1980) Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiol. J. 2: 21–37Google Scholar
  91. Nealson KH, Tebo BM & Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33: 279–318Google Scholar
  92. Ohle W (1937) Kolloidgele als Nährstoffregulatoren der Gewässer. Naturwissenschaften 29: 471–474Google Scholar
  93. Parfitt RL & Atkinson RJ (1976) Phosphate adsorption on goethite (α-FeOOH). Nature 264: 740–742Google Scholar
  94. Parfitt RL, Atkinson RJ & Smart RSC (1975) The mechanism of phosphate fixation by iron oxides. Soil Sci. Am. Proc. 39: 837–841Google Scholar
  95. Persson C (1977) Description to the Quaternary maps Nynäshamn NV/SV and Nynäshamn NO/SO (In Swedish with English summary). In: Swedish Geological Survey Ser. Ae, No 31/32 (pp 19–83). Stockholm, SwedenGoogle Scholar
  96. Persson G (1991) Mälarens vattenkvalitet under 20 år. 3. Metaller i sediment och vatten samt metalltillförsel (In Swedish with English summary). Swedish Environmental Protection Agency, Report 3904, Solna, Sweden. 42 ppGoogle Scholar
  97. Schaffner LC, Jonsson P, Diaz RJ, Rosenberg R & Gapcynski P (1992) Benthic communities and bioturbation history of estaurine and coastal systems: effects of hypoxia and anoxia. Sci. Tot. Environ. Suppl., Marine coastal eutrophication, pp 1001–1016Google Scholar
  98. Shaffer G (1986) Phosphate pumps and shuttles in the Black Sea. Nature 321: 515–517Google Scholar
  99. Sigg L & StummW(1981) The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface. Colloids Surf. 2: 101–117Google Scholar
  100. Stålhös G (1968) Solid rocks of the Stockholm region (In Swedish with English summary). Swedish Geological Survey Ser. Ba, No. 24, Stockholm, Sweden. 190 ppGoogle Scholar
  101. Stålhös G (1979) Description to the map of solid rocks Nynäshamn NV/SV (In Swedish with English summary). Swedish Geological Survey Ser. Af, No. 125, Uppsala, Sweden. 106 ppGoogle Scholar
  102. Stålhös G (1982) Description to the map of solid rocks Strängnäs SO (In Swedish with English summary). In: Swedish Geological Survey Ser. Af, No 142 (pp 29–78). Uppsala, SwedenGoogle Scholar
  103. Stålhös G (1984) Description to the map of solid rocks Strängnäs NV/NO (In Swedish with English summary). In: Swedish Geological Survey Ser. Af, No 144/145 (pp 30–96). Uppsala, SwedenGoogle Scholar
  104. Staudinger B, Peiffer S, Avnimelech Y & Berman T (1990) Phosphorus mobility in interstial waters of sediments in Lake Kinneret, Israel. Hydrobiologia 207: 167–177Google Scholar
  105. Stauffer RE (1987) A comparative analysis of iron, manganese, silica, phosphorus, and sulfur in the hypolimnia of calcareous lakes. Wat. Res. 21: 1009–1022Google Scholar
  106. Stauffer RE & Armstrong DE (1986) Cycling of iron, manganese, silica, phosphorus, calcium and potassium in two stratified basins of Shagawa Lake, Minnesota.Geochim. Cosmochim. Acta 50: 215–229Google Scholar
  107. Stumm W & Leckie JO (1971) Phosphate exchange with sediments: its role in the productivity of surface waters. In: Jenkins SH (Ed) Proc. 5th Internat. Conf., Adv. Wat. Pollut. Res. 5: III-26/1–26/16. Pergamon Press, OxfordGoogle Scholar
  108. Sundby B, Andersson LG, Hall P, Iverfeldt O, Rutgers van der Loeff MM & Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 50: 1281–1288Google Scholar
  109. Tejedor-Tejedor MI & Anderson MA(1990) Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 6: 602–611Google Scholar
  110. Tessenow U (1973) Solution diffusion and sorption in the upper layers of lake sediments. III. The chemical and physical conditions inthe sediment-water transition zone of ameromictic bog lake (Ursee) and its relation to the accumulation of vivianite (In German with English summary). Arch. Hydrobiol. Suppl. 42: 273–339Google Scholar
  111. Tessenow U (1974) Solution diffusion and sorption in the upper layers of lake sediments. IV. Reaction mechanisms and equilibria in the system iron-manganese-phosphate with regard to the accumulation of vivianite in Lake Ursee (In German with English summary). Arch. Hydrobiol. Suppl. 47: 1–79Google Scholar
  112. Tessenow U (1975) Solution diffusion and sorption in the upper layers of lake sediments. V. The differentiation of the profundal sediments of an oligotrophic mountain lake (Feldsee, Hochscharzwald) by sediment-water-interaction (In German with English summary). Arch. Hydrobiol. Suppl. 47: 325–412Google Scholar
  113. Truitt RE & Weber JH (1979) Trace metal ion filtration losses at pH 5 and 7. Anal. Chem. 51: 2057–2059Google Scholar
  114. Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115Google Scholar
  115. Von Gunten U & Schneider W (1991) Primary products of the oxygenation of iron(II) at an oxic-anoxic boundary: nucleation, aggregation, and aging. J. Colloid Interface Sci. 145: 127–139Google Scholar
  116. Weiner ER, Goldberg MC & Boymel PM(1984) Phosphate bonding to goethite and pyrolusite surfaces. Toxicol. Environ. Chem. 8: 213–219Google Scholar
  117. Wiederholm T (1978) Long-term changes in the profundal benthos of Lake Mälaren. Verh. Internat. Verein. Limnol. 20: 818–824Google Scholar
  118. Willén E, Wiederholm T & Persson G (1990) Mälarens vattenkvalitet under 20 år. 2. Strandvegetation, plankton, bottendjur och fisk (In Swedish with English summary). Swedish Environmental Protection Agency, Report 3842, Solna, Sweden. 42 ppGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Anneli Gunnars
    • 1
  • Sven Blomqvist
    • 2
  1. 1.Department of Physical, Inorganic and Structural ChemistryArrhenius LaboratorySweden
  2. 2.Department of Systems Ecology, Section Marine Ecology; Department of Geology and GeochemistryStockholm UniversityStockholmSweden

Personalised recommendations