Journal of Neuro-Oncology

, Volume 33, Issue 1–2, pp 141–152 | Cite as

Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: Trial design and early clinical results

  • Jeffrey A. Coderre
  • Eric H. Elowitz
  • Manjeet Chadha
  • Richard Bergland
  • Jacek Capala
  • Darrel D. Joel
  • Hungyuan B. Liu
  • Daniel N. Slatkin
  • Arjun D. Chanana


A Phase I/II clinical trial of boron neutroncapture therapy (BNCT) for glioblastoma multiforme is underwayusing the amino acid analog p-boronophenylalanine (BPA) andthe epithermal neutron beam at the Brookhaven MedicalResearch Reactor. Biodistribution studies were carried out in18 patients at the time of craniotomy usingan i.v. infusion of BPA, solubilized as afructose complex (BPA-F). There were no toxic effectsrelated to the BPA-F administration at doses of130, 170, 210, or 250 mg BPA/kg bodyweight. The tumor/blood, brain/blood and scalp/blood boron concentrationratios were approximately 3.5:1, 1:1 and 1.5:1, respectively.Ten patients have received BNCT following 2-hr infusionsof 250 mg BPA/kg body weight. The averageboron concentration in the blood during the irradiationwas 13.0 ± 1.5 μg 10B/g. The prescribedmaximum dose to normal brain (1 cm3 volume)was 10.5 photon-equivalent Gy (Gy-Eq). Estimated maximum andminimum doses (mean ± sd, n=10)to the tumor volume were 52.6 ± 4.9Gy-Eq (range: 64.4–47.6) and 25.2 ± 4.2 Gy-Eq(range: 32.3–20.0), respectively). The estimated minimum dose tothe target volume (tumor + 2 cm margin)was 12.3 ± 2.7 Gy-Eq (range: 16.2–7.8). Therewere no adverse effects on normal brain. Thescalp showed mild erythema, followed by epilation inthe 8 cm diameter field. Four patients developedrecurrent tumor, apparently in the lower dose (deeper)regions of the target volume, at post-BNCT intervalsof 7, 5, 3.5 and 3 months, respectively.The remaining patients have had less than 4months of post-BNCT follow-up. BNCT, at this startingdose level, appears safe. Plans are underway tobegin the dose escalation phase of this protocol.

boron neutron capture therapy glioblastoma multiforme boronophenylalanine Phase I/II trial epithermal neutrons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slatkin DN: A history of boron neutron capture therapy of brain tumours–Postulation of a brain radiation dose tolerance limit. Brain 114: 1609–1629, 1991Google Scholar
  2. 2.
    Barth RF, Soloway AH, Fairchild RG, Brugger RM: Boron neutron capture therapy for cancer. Realities and prospects. Cancer 70: 2995–3007, 1992Google Scholar
  3. 3.
    Coderre JA, Joel DD, Micca PL, Nawrocky MM, Slatkin DN: Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine. Radiat Res 129: 290–296, 1992Google Scholar
  4. 4.
    Coderre J, Rubin P, Freedman A, Hansen J, Wooding TS, Joel D, Gash D: Selective ablation of rat brain tumors by boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1067–1077, 1994Google Scholar
  5. 5.
    Coderre JA, Button TM, Micca PL, Fisher CD, Nawrocky MM, Liu HB: Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys 30: 643–652, 1994Google Scholar
  6. 6.
    Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI: Derivations of relative biological effectiveness for the high-LET radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitroand in vivo. Int J Radiat Oncol Biol Phys 271129, 1993Google Scholar
  7. 7.
    Morris GM, Coderre JA, Hopewell JW, Micca PL, Nawrocky MM, Liu HB, Bywaters A: Response of the central nervous system to boron neutron capture irradiation: Evaluation using rat spinal cord model. Radiother Oncol 32: 249–255, 1994Google Scholar
  8. 8.
    Coderre JA, Morris GM, Micca PL, Nawrocky MM, Fisher CD, Bywaters A, Hopewell JW: The therapeutic ratio in BNCT: Assessment using the rat 9L gliosarcoma brain tumor and spinal cord models. In: Mishima Y (ed) Neutron Capture Therapy for Cancer. Plenum Press, New York, 1996, pp 757–762Google Scholar
  9. 9.
    Liu HB, Brugger RM, Greenberg DD, Rorer DC, Hu JP, Hauptman HM: Enhancement of the epithermal neutron beam used for boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1149–1156, 1994Google Scholar
  10. 10.
    Husikamp R, Gavin PR, Coderre JA, Phillip KHI, Wheeler FJ: Brain tolerance in dogs to boron neutron capture therapy with borocaptate sodium (BSH) or boronophenylalanine (BPA). In: Mishima Y (ed) Neutron Capture Therapy for Cancer. Plenum Press, New York, 1996, pp 591–598Google Scholar
  11. 11.
    Coderre JA: A Phase 1 biodistribution study of p-boronophenylalanine. In: Moss R, Gabel D (eds) Boron Neutron Capture Therapy: Towards Clinical Trials of Glioma With BNCT. Plenum Press, New York, 1992, pp 111–121Google Scholar
  12. 12.
    Bergland R, Elowitz E, Coderre JA, Joel D, Chadha M: A Phase I trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme. In: Mishima Y (ed) Neutron Capture Therapy for Cancer. Plenum Press, New York, 1996, pp 739–746Google Scholar
  13. 13.
    Coderre JA: Boron neutron capture therapy. In: Leibel S, Phillips T (eds) Textbook of Radiation Oncology. W.B. Saunders Company, Philadelphia, in pressGoogle Scholar
  14. 14.
    Coderre JA, Bergland R, Chadha M, Chanana A, Elowitz E, Joel DD, Liu HB, Slatkin DN, Wielopolski L: BNCT of glioblastoma multiforme using BPA-fructose and epithermal neutrons. In: Mishima Y (ed) Neutron Capture Therapy for Cancer. Plenum Press, New York, 1996, pp 553–561Google Scholar
  15. 15.
    Yoshino K, Suzuki A, Mori Y, Kanihana H, Honda C, Mishima Y, Kobayashi T, Kanda K: Improvement of solubility of p-boronophenylalanine by complex formation with monosaccharides. Strahlenther Oncol 165: 127–129, 1989Google Scholar
  16. 16.
    LaHann TR, Lu DR, Daniell G, Kraft SL, Gavin PR, Bauer WF: Bioavailability of intravenous formulations of p-boronophenylalanine in dog and rat. In: Soloway AH, Barth RF, Carpenter DE (eds) Advances in Neutron Capture Therapy. Plenum Press, New York, 1993, pp 585–589Google Scholar
  17. 17.
    Nigg DW: Methods for radiation dose distribution analysis and treatment planning in boron neutron capture therapy. Int J Radiat Oncol Biol Phys 28: 1121–1134, 1994Google Scholar
  18. 18.
    Wallace SA, Mathur JN, Allen BJ: Treatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumors. Phys Med Biol 39: 897–906, 1994Google Scholar
  19. 19.
    Karnofsky DA, Burchenal JH: The clinical evaluation of chemotherapeutic agents in cancer. In: McLeod CM (ed) Evaluation of Chemotherapeutic Agents. Columbia University Press, New York, 1949, pp 191–205Google Scholar
  20. 20.
    Fukuda H, Hiratsuka J, Honda C, Kobayashi T, Yoshino K, Karashima H, Takahashi J, Abe Y, Kanda K, Ichihashi M, Mishima Y: Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the skin. Radiat Res 138: 435–442, 1994Google Scholar
  21. 21.
    Leibel SA, Scott CB, Loeffler JS: Contemporary approaches to the treatment of malignant gliomas with radiation therapy. Semin Oncol 21: 198–219, 1994Google Scholar
  22. 22.
    Masciopinto JE, Levin AB, Mehata MP, Rhode BS: Stereotactic radiosurgery for glioblastoma: a final report of 31 patients. J Neurosurg 82: 530–535, 1995Google Scholar
  23. 23.
    Laramore GE, Griffin TW, Gerdes AJ, Parker RG: Fast neutron and mixed beam (neutron/photon) teletherapy for grades III and IV astrocytomas. Cancer 42: 96–103, 1978Google Scholar
  24. 24.
    Catterall M, Bloom HJG, Ash DV, Walsh L, Richardson A, Uttley D, Gowing NFC, Lewis P, Chaucer B: Fast neutrons compared with megavoltage x-rays in the treatment of patients with supratentorial glioblastoma: A controlled pilot study. Int J Radiat Oncol Biol Phys 6: 261–266, 1980Google Scholar
  25. 25.
    Saroja KR, Mansell J, Hendrickson FR, Cohen L, Lennox A: Failure of accelerated neutron therapy to control high grade astrocytomas. Int J Radiat Oncol Biol Phys 17: 1295–1297, 1989Google Scholar
  26. 26.
    Laramore GE: Injury to the central nervous system after high LET radiation. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation Injury to the Nervous System. Raven Press, Ltd., New York, 1991, pp 341–360Google Scholar
  27. 27.
    Gavin PR, Wheeler FJ, Huiskamp R, Siefert A, Kraft S, DeHaan C: Large animal studies of normal tissue tolerance using an epithermal neutron beam and borocaptate sodium. In: Gabel D, Moss R (eds) Towards Clinical Trials of Glioma. Plenum Press, New York, 1992, pp 197–209Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jeffrey A. Coderre
    • 1
  • Eric H. Elowitz
    • 2
  • Manjeet Chadha
    • 3
  • Richard Bergland
    • 2
  • Jacek Capala
    • 1
  • Darrel D. Joel
    • 1
  • Hungyuan B. Liu
    • 1
  • Daniel N. Slatkin
    • 1
  • Arjun D. Chanana
    • 1
  1. 1.Medical Department Brookhaven National LaboratoryUptonU.S.A
  2. 2.Department of NeurosurgeryBeth Israel Medical CenterNew YorkUSA
  3. 3.Department of Radiation OncologyBeth Israel Medical CenterNew YorkUSA

Personalised recommendations