Journal of Atmospheric Chemistry

, Volume 26, Issue 2, pp 189–222 | Cite as

Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons



Measurements of aerosol formation during thephotooxidation of α-pinene, β-pinene,d-3-carene, d-limonene, ocimene, linalool, terpinene-4-ol, andtrans-caryophyllene were conducted in anoutdoor smog chamber. Daylight experiments in thepresence of \({\text{NO}}_x \) and dark experiments withelevated ozone concentrations were performed. Theevolution of the aerosol was simulated by theapplication of a gas/particle absorption model inconnection with a chemical reaction mechanism. Thefractional aerosol yield is shown to be a function ofthe organic aerosol mass concentration andtemperature. Ozone and, for selected hydrocarbons, theNO3 reaction of the compounds were found torepresent efficient routes to the formation ofcondensable products. For initial hydrocarbon mixingratios of about 100 ppb, the fractional aerosol yieldsfrom daylight runs have been estimated to be ∼5%for open-chain hydrocarbons, such as ocimene andlinalool, 5–25% for monounsaturated cyclicmonoterpenes, such as α-pinene, d-3-carene, orterpinene-4-ol, and ∼40% for a cyclic monoterpenewith two double bonds like d-limonene. For the onlysesquiterpene investigated, trans-caryophyllene, afractional aerosol yield of close to 100% wasobserved. The majority of the compounds studied showedan even higher aerosol yield during dark experimentsin the presence of ozone.

biogenic hydrocarbons ozone nitrate radicals aerosol formation gas/particle partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., 1995: Climatic effects of changing atmospheric aerosol levels, in A. Henderson-Sellers (ed), World Survey of Climatology, Vol. 16: Future Climates of the World, pp. 341–392.Google Scholar
  2. Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1991: Terpenes emitted from agricultural species found in California’s central valley, J. Geophys. Res. 96, 9329–9336.Google Scholar
  3. Atkinson, R., 1991: Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data 20, 459–507.Google Scholar
  4. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data (Monograph No.2), pp. 1–216.Google Scholar
  5. Atkinson, R. and Aschmann, S. M., 1993: Atmospheric chemistry of the monoterpene reaction products Nopinone, Camphenilone, and 4-Acetyl-1-Methylcyclohexene, J. Atmos. Chem. 16, 337–348.Google Scholar
  6. Calogirou, A., Kotzias, D., and Kettrup, A., 1996: Product analysis of the gas-phase reaction of ß-;caryophyllene with ozone, Atmos. Environ. 31, 283–285.Google Scholar
  7. Carter, W. P. L., 1990:, A detailed mechanism for the gas-phase atmospheric reactions of organic compounds, Atmos. Environ. 24A, 481–518.Google Scholar
  8. Chameides,. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., and Wang, T., 1992: Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res. 97, 6037–6055.Google Scholar
  9. Eatough, D. J., Wadsworth, A., Eatough, D. A., Crawford, J. W., Hansen, L. D., and Lewis, E. A., 1993: A multiple-system, multi-channel diffusion denuder sampler for the determination of fineparticulate organic material in the atmosphere, Atmos. Environ. 27A, 1213–1219.Google Scholar
  10. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles 6, 389–430.Google Scholar
  11. Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C., and Montzka, S. A., 1995: Hydrocarbon measurements in the southeastern United States: The rural oxidants in the Southern environment (ROSE) program 1990, J. Geophys. Res. 100, 25945–25963.Google Scholar
  12. Grosjean, D., 1992: In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality, Atmos. Environ. 26A, 953–963.Google Scholar
  13. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  14. Hakola, H., Arey, J., Aschmann, S. A., and Atkinson, R., 1994: Product formation from the gas-phase reactions of OH-radicals and O3 with a series of monoterpenes, J. Atmos. Chem. 18, 75–102.Google Scholar
  15. Hatakeyama, S. and Akimoto, H., 1994: Reactions of Criegee intermediates in the gas phase, Res. Chem. Intermed. 20, 503–524.Google Scholar
  16. Hatakeyama, S., Izumi, K., Fukuyama, T., and Akimoto, H., 1989: Reactions of ozone with α-pinene and ß-pinene in air:Yields of gaseous and particulate products, J. Geophys. Res. 94, 13013–13024.Google Scholar
  17. Hatakeyama, S., Izumi, K., Fukuyama, T., Akimoto, H., and Washida, N., 1991: Reactions of OH with α-pinene and ß-pinene in air: Estimate of global CO production from the atmospheric oxidation of terpenes, J. Geophys. Res. 96, 947–958.Google Scholar
  18. Helmig, D. and Arey, J., 1992: Organic chemicals in the air of Whitaker’s forest/Sierra Nevada Mountains, California, Sci. Total Environ. 112, 233–250.Google Scholar
  19. Helmig, D., Klinger, L. F., Greenberg, J., and Zimmerman, P., 1994: Emissions and identification of individual organic compounds from vegetation in three ecosystems in the U.S., Paper presented at the 207th ACS Meeting, Am. Chem. Soc., San Diego, Calif., March 13-18.Google Scholar
  20. Hoffmann, T., 1995: Adsorptive preconcentration technique including oxidant scavenging for the measurement of reactive natural hydrocarbons in ambient air, Fresenius J. Anal. Chem. 351, 41–47.Google Scholar
  21. Hooker, C. L., Westberg, H.H., and Sheppard, J. C., 1985: Determination of carbon balances for smog chamber terpene oxidation experiments using a carbon-14 tracer technique, J. Atmos. Chem. 2, 307–320.Google Scholar
  22. Hough, A. M. and Johnson, C. E., 1991:,Modelling the role of nitrogen oxides, hydrocarbons and carbon monoxide in the global formation of tropospheric oxidants, Atmos. Environ. 25A, 1819–1835.Google Scholar
  23. Hull, L. A., 1981: Terpene ozonolysis products, in J. J. Bufalini and R. R. Arnts (eds), Atmos. Biog. Hydrocarbons, Vol. 2, Ann Arbor Science, Ann Arbor.Google Scholar
  24. Jonas, P. R., Charlson, R. J., and Rohde, H., 1995: Aerosols, in J. T. Houghton, L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, and K. Maskell (eds), Climate Change 1994, Reports of Working Groups I and III of the IPCC, University Press, Cambridge.Google Scholar
  25. Kamens, R. M., 1981: The impact of α-pinene on urban smog formation: An outdoor smog chamber study, in J. J. Bufalini and R. R. Arnts (eds), Atmos. Biog. Hydrocarbons, Vol. 2, Ann Arbor Science, Ann Arbor.Google Scholar
  26. Koenig, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J., 1995: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected Mid-European agricultural and natural plant species, Atmos. Environ. 29, 861–874.Google Scholar
  27. Liu, B. Y. and Lee, K. W., 1975: An aerosol generator of high stability, Am. Ind. Hyg. Assoc. J. 36, 861–865.Google Scholar
  28. McKeen, S. A., Hsie, E.-Y., Trainer, M., Tallamraju, R., and Liu, S. C., 1991a: A regional model study of the ozone budget in the Eastern United States, J. Geophys. Res. 96, 10809–10845.Google Scholar
  29. McKeen, S. A., Hsie, E.-Y. and Liu, S. C., 1991b: A study of the dependence of rural ozone on ozone precursors in the eastern United States, J. Geophys. Res. 96, 15377–15394.Google Scholar
  30. Müller, J. F., 1992: Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, J. Geophys. Res. 97, 3787–3804.Google Scholar
  31. National Research Council, 1996: Aerosol Radiative Forcing and ClimateChange, National Academy Press, Washington, DC.Google Scholar
  32. Novakov, T. and Penner, J. E., 1993: Large contribution of organic aerosols to cloud-condensationnuclei concentrations, Nature 365, 823–826.Google Scholar
  33. Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H., 1996: Gas/particle partitioning and secondary aerosol formation, Environ. Sci. Technol. 30, 2580–2585.Google Scholar
  34. Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1992: Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and β-pinene, Atmos. Environ. 26A, 1239–1251.Google Scholar
  35. Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C., 1991: Aerosol formation in the photooxidation of isoprene and β-pinene, Atmos. Environ. 25A, 997–01008.Google Scholar
  36. Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H., 1992: Secondary organic aerosol formation and transport, Atmos. Environ. 26A, 2269–2282.Google Scholar
  37. Pankow, J. F., 1994a: An absortion model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ. 28, 189–193.Google Scholar
  38. Pankow, J. F., 1994b: An absortion model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ. 28, 185–188.Google Scholar
  39. Paulson, S. E., Pandis, S. N., Baltensperger, U., Seinfeld, J. H., Flagan, R. C., Palen, E. J., Allen, D. T., Schaffner, C., Giger, W., and Portmann, A., 1990: Characterization of photochemical aerosols from biogenic hydrocarbons, J. Aerosol Sci. 21, 245–248.Google Scholar
  40. Pilinis, C., Pandis, S., and Seinfeld, J. H., 1995: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, J. Geophys. Res. 100, 18739–18754.Google Scholar
  41. Prinn, R. et al., 1992: Global average concentration and trend for OH radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990, J. Geophys. Res. 97, 2445–2461.Google Scholar
  42. Roselle, S. J., Pierce, T. E., and Schere, K. L., 1991: The sensitivity of regional ozone modeling to biogenic hydrocarbons, J. Geophys. Res. 96, 7371–7394.Google Scholar
  43. Saxena, P., Hidlemann, L., McMurry, P. H., and Seinfeld, J. H., 1995: Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res. 100, 18755–18770.Google Scholar
  44. Shu, Y. and Atkinson, R., 1995: Rate constants gor the gas-phase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296 ± 2K, International J. Chem. Kinetics(in press).Google Scholar
  45. Shu, Y. and Atkinson, R., 1995: Atmospheric lifetimes and fates of a series of sesquiterpenes, J. Geophys. Res. 100, 7275–7281.Google Scholar
  46. Shulman, M., Jacobson, M., Charlson, R. J., Synovec, R. E., and Young, T. E., 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett. 23, 277–280.Google Scholar
  47. Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R., 1995: Biogenic emissions in Europe: 1. Estimates and uncertainties, J. Geophys. Res. 100, 22875–22890.Google Scholar
  48. Swigar, A. A. and Silverstein, R. M., 1981: Monoterpenes. Infrared, Mass, 1 H NMR, and 13 C NMR Spectra, and Kovats Indices, Aldrich Chem. Comp., Milwaukee, Wisconsin.Google Scholar
  49. Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R. B., Fehsenfeld, F. C., Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V. C., Meagher, J. F., Olszyna, K. J., Rodgers, M. O., Wang, T., Berresheim, H., Demerjian, K. L., and Roychowdhury, U. K., 1993: Correlation of ozone with NOy in photochemically aged air, J. Geophys. Res. 98, 2917–2925.Google Scholar
  50. Tu, C.-H., 1994: Group-contribution method for the estimation of vapor pressures, Fluid Phase Equilibria 99, 105–120.Google Scholar
  51. Twomey, S., 1991: Aerosols, clouds and radiation, Atmos. Environ. 25A, 2435–2442.Google Scholar
  52. Vogel, B., Fiedler, F., and Vogel, H., 1995: Influence of topography and biogenic volatile organic compounds emission in the state ofBaden-Wuerttemberg on ozone concentrations during episodes of high air temperatures, J. Geophys. Res. 100, 22907–22928.Google Scholar
  53. Wayne, R. P., 1991: The nitrate radical: Physics, chemistry and the atmosphere, Atmos. Environ. 25A, 1–206.Google Scholar
  54. Went, F. W., 1960: Blue hazes in the atmosphere, Nature 187, 641–643.Google Scholar
  55. Winer, A. M., Arey, J., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M., 1992: Emission rates of organics from vegetation in California’s Central Valley, Atmos. Environ. 26, 2647–2659.Google Scholar
  56. Winterhalter, R., Neeb, P., Sauer, F., Horie, O., and Moortgat, G. K., 1996: Gas phase ozonolysis of β-pinene: Effect of HCHO and HCOOH addition on product and aerosol formation, in P. Borell (ed), Proceedings of the EUROTRAC Symposium 96.Google Scholar
  57. Zhang, S. H., Shaw, M., Seinfeld, J. H., and Flagan, R. C., 1992: Photochemical aerosol formation from α-pinene-and β-pinene, J. Geophys. Res. 97, 20717–20729.Google Scholar
  58. Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H., 1995: Radial differential mobility analyzer, Aerosol Sci. Technol. 23, 357–372.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 2
    • 3
    • 2
    • 1
    • 3
    • 3
  1. 1.Institut für Spektrochemie und angewandte SpektroskopieDortmundGermany
  2. 2.Department of Environmental Engineering ScienceCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Department of Chemical EngineeringCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations