, Volume 37, Issue 3, pp 237–252

Marine nitrogen: Phosphorus stoichiometry and the global N:P cycle



Nitrogen supply is often assumed to limitmarine primary production. A global analysis of totalnitrogen (N) to phosphorus (P) molar ratios shows thattotal N:P is low (<16:1) in some estuarine andcoastal ecosystems, but up to 100:1 in open oceans.This implies that elements other than N may limitmarine production, except in human impacted, estuarineor coastal ecosystems. This pattern may reconcileconflicting enrichment studies, because N additionfrequently increases phytoplankton growth where totalN:P is expected to be low, but P, Fe, or Si augmentphytoplankton growth in waters where total N:P ishigh. Comparison of total N:P stoichiometry betweenmarine and freshwaters yields a model of the form ofthe aquatic N:P cycle.

freshwater limitation marine nitrogen phosphorus ratio stoichiometry trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amon RMW & Benner R (1994) Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature (London) 369: 549–552Google Scholar
  2. Ben-Taleb KS, El-Khattal AO, Ramadan ZM & El-Belaazi AM (1987) Some physico-chemical characteristics of Tajura sea-shore water: East of Tripoli (S.P.L.A.J.)Bulletin of the Marine Biological Research Center of Tajura 8: 89–124Google Scholar
  3. Bentzen E, Taylor WD & Millard ES (1992) The importance of dissolved organic phosphorus to phosphorus uptake by limnetic plankton. Limnol. and Oceanography 37: 217–231Google Scholar
  4. Berland BR, Bonin DJ & Maestrini SY (1977) Role du phosphore dans la limitation de la production primaire dans les eaux Mediterranéenes. Actualités de Biochimie Marine 2: 243–246Google Scholar
  5. Berland BR, Burlakova ZP, Georgieva LV, Izmestieva M, Khologov VI, Krupatkina DK, Maestrini SY & Zaika VE (1987) FRPhytoplancton estival de la mer du Levant, biomasse et facteurs limitants. IFREMER Acta Colloquia 5: 61–83Google Scholar
  6. Black RE, Lukatelich RJ, McComb AJ & Rosher JE (1981) Exchange of water, salt, nutrients and phytoplankton between Peel Inlet,Western Australia, and the Indian Ocean. Australian J. Marine and Freshwater Res. 32: 709–720Google Scholar
  7. Bonin DJ, Bonin MC & Berman T (1989) Mise en évidence expérimentale des facteurs nutritifs limitants de la production dumicro-nanoplancton et de l'ultraplancton dans une eau coti`ere de la Méditerranée orientale (Haïfa, Israël). Aquatic Sciences 51(2): 129–152Google Scholar
  8. Boynton WR, Kemp WM & Keefe CW (1982) A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: Kennedy VS (Ed) Estuarine Comparisons (pp 69–70). Academic, NYGoogle Scholar
  9. Capone D & Carpenter EJ (1982) Nitrogen fixation in the marine environment. Science 217: 1140–1142Google Scholar
  10. Cleveland W & McGill SR (1985) Graphical perception and graphical methods for analyzing scientific data. Science 229: 828–833Google Scholar
  11. Copin-Montégut C & Copin-Montégut G (1983) Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep-Sea Research 30: 31–46Google Scholar
  12. Coste B, Le Corre P & Minas HJ (1988) Re-evaluation of the nutrient exchanges in the Strait of Gibralter. Deep-Sea Research 35: 767–775Google Scholar
  13. D'Elia CF, Steudler PA & Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnology and Oceanography 22: 760–764Google Scholar
  14. D'Elia CF, Sanders JG & Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large-scale, continuous cultures. Can. J. Fisheries and Aquatic Sci. 43: 397–406Google Scholar
  15. D'Elia CF, Harding LW Jr., Leffler M & Mackiernan GB (1992) The role and control of nutrients in Chesapeake Bay. Water Science and Technology 26: 2635–2644Google Scholar
  16. Dal Pont GK, Hogan M & Newell B (1974) Laboratory techniques in marine chemistry II-a manual. CSIRO Australia Division of Fisheries and Oceanography, Report 55Google Scholar
  17. Dame R, Chrzanowski T, Bildstein K, Kjerfve B, McKellar H, Nelson D, Spurrier J, Stancyk S, Stevenson H, Vernberg J & Zingmark R (1986) The outwelling hypothesis and North Inlet, South Carolina. Marine Ecology Progress Series 33: 217–229Google Scholar
  18. Degobbis D & Gilmartin M (1990) Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanologica Acta 13: 31–45Google Scholar
  19. DiTullio GR, Hutchins DA & Bruland KW (1993) Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. and Oceanography 38: 495–508Google Scholar
  20. Downing JA & McCauley E (1992) The nitrogen:phosphorus relationship in lakes. Limnol. and Oceanography 37: 936–945Google Scholar
  21. Edmondson WT (1956) Factors affecting productivity in fertilized salt water. Deep-Sea Research Supplement 3: 451–464Google Scholar
  22. Elser JJ & Hassett RP (1994) A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370: 211–213Google Scholar
  23. Elser JJ, Marzolf ER & Goldman CR (1990) Phosphorus and nitrogen limitation of phytoplankton in freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fisheries and Aquatic Sci. 47: 1468–1477Google Scholar
  24. Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339: 460–463Google Scholar
  25. FAO (1993) Fishery Statistics Yearbook, vol. 72 Rome.Google Scholar
  26. Fisher TR, Peele ER, Ammerman JW & Harding LW Jr (1992) Metabolic adaptations of deep-sea benthic foraminifera to seasonally varying food input. Marine Ecology Progress Series 82: 51–63Google Scholar
  27. Gibbs CF, Tomczak M & Longmore AR (1986) The nutrient regime of Bass Strait. Australian J. Marine and Freshwater Res. 37: 451–466Google Scholar
  28. Glibert PM, Garside C, Fuhrman JA & Roman MR (1991) Time-dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs. Limnol. and Oceanography 36: 895–909Google Scholar
  29. Granéli E (1984) Algal growth potential and limiting nutrients for phytoplankton production in Öresund water of Baltic and Kattegat origin. Limnologica 15: 563–569Google Scholar
  30. Granéli E (1987) Nutrient limitation of phytoplankton biomass in a brackish water bay highly influenced by river discharge. Estuarine, Coastal and Shelf Science 25: 555–565Google Scholar
  31. Grasshoff K (1976) Methods of Seawater Analysis. 1st edn. Verlag ChemieWeinheimGoogle Scholar
  32. Grasshoff K (1983) Methods of Seawater Analysis. 2nd edn. Verlag Chemie WeinheimGoogle Scholar
  33. Hecky RE & Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. and Oceanography 33: 796–822Google Scholar
  34. Hoegh-Goldberg O (1994) Uptake of dissolved organic matter by larval stage of the crownof-thorns starfish Acanthaster planci. Marine Biology 120: 55–63Google Scholar
  35. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. An. Rev. of Ecology 19: 89–110Google Scholar
  36. Howarth RW, Jensen H, Marino R & Postma H (1995) Transport to and processing of phosphorus in near-shore and oceanic waters (pp 323–345). In: Tiessen H (Ed) Phosphorus in the Global Environment: Transfers, Cycles and Management. SCOPE 54, Wiley & Sons, ChichesterGoogle Scholar
  37. Ikeda T, Carleton JH, Mitchell AW & Dixon P (1982) Ammonia and phosphate excretion by zooplankton fromthe inshorewaters of the GreatBarrierReef. II. Their in situcontributions to nutrient regeneration. Australian J. Marine and Freshwater Res. 33: 683–698Google Scholar
  38. Jackson GA & Williams PM (1985) Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Research 32: 223–235Google Scholar
  39. Jordan TE, Correll DL, Miklas J & Weller DE (1991) Nutrients and chlorophyll at the interface of a watershed and an estuary. Limnol. and Oceanography 36: 251–267Google Scholar
  40. Karl DM, Leteller R, Hebel D, Tupas L, Dore J, Christian J & Winn C (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991-92 El Niño. Nature (London) 373: 230–234Google Scholar
  41. Karl DM, Tien G, Dore J & Winn CD (1993) Total dissolved nitrogen and phosphorus concentrations at US-JGOFS station ALOHA: Redfield reconciliation. Marine Chemistry 41: 203–208Google Scholar
  42. Krom MD, Kress N, Brenner S & Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. and Oceanography 36: 424–432Google Scholar
  43. Lahdes E & Leppanen JM (1988) Cycling of organic matter during the vernal growth period in the open Northern Baltic proper. II. Nutrient development and chemical composition of particulate matter. Finnish Marine Research 255: 19–35Google Scholar
  44. Lapointe BE (1986) Phosphorus-limited photosynthesis and growth of Sargassum natansand Sargassum fluitans(Phaeophyceae) in the western North Atlantic. Deep-Sea Research 33: 391–399Google Scholar
  45. Le Rouzic & Bertru BG (1992) Détermination par bioessai de la biodisponibilité des ressources azote et phosphore, dans les eaux du Golfe du Morbihan. Revue des Sciences de l'Eau 5: 97–111Google Scholar
  46. Mackenzie FT, Ver LM, Sabine C, Lane M & Lerman A (1993) C, N, P, S global biogeochemical cycles and modeling of global change. In: Wollast R, Mackenzie FT & Chou L (Eds) Interactions of C, N, P and S, Biogeochemical Cycles and Global Change (pp 1–61). Springer-Verlag, BerlinGoogle Scholar
  47. Martin JH & Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east pacific subarctic. Nature 331: 341–343Google Scholar
  48. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, Van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P & Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129Google Scholar
  49. Menzel DW & Corwin N (1965) The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. and Oceanography 10: 280–282Google Scholar
  50. Menzel DW & Ryther JH (1961) Nutrients limiting the production of phytoplankton in the Sargasso Sea, with special reference to iron. Deep-Sea Research 7: 276–281Google Scholar
  51. Menzel DW, Hulburt EM & Ryther JH (1963) The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton. Deep-Sea Research 10: 209–219Google Scholar
  52. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282: 401–450Google Scholar
  53. Peierls B, Caracao N, Pace M & Cole J (1991) Human influence on river nitrogen. Nature 350: 386–387Google Scholar
  54. Perttilä MP, Tulkki P & Pietikainen S (1980) Mean values and trends of hydrographical and chemical properties in the Gulf of Finland 1962-1978. Finnish Marine Research 247: 38–50Google Scholar
  55. Pietikäinen S, Niemi A, Tulkki P & Aurimaa K (1978) Mean values and trends of physical and chemical properties in the Gulf of Bothnia 1962-1975. Finnish Marine Research 244: 64–75Google Scholar
  56. Pitkänen H & Malin V (1980) The mean values and trends of some water quality variables in winter in the Gulf of Finland 1966-1978. Finnish Marine Research 247: 51–60Google Scholar
  57. Ramadan ZM, Ben-Taleb KS & Trozosinska A (1984) Ecological conditions in the Mediterranean coastal zone. Acase study: FisheryHarbour of Tripoli, Libya. Bulletin of theMarine Research Center of Tripoli 5: 69–106Google Scholar
  58. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnstone Memorial Volume (pp 176–192). Univ. Press, LiverpoolGoogle Scholar
  59. Redfield AC (1958) The biological control of chemical factors in the environment. Am. Sci. 46: 205–221Google Scholar
  60. Redfield AC, Ketchum BH & Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (Ed) The Sea, vol. 2 (pp 26–77) Wiley, NYGoogle Scholar
  61. Rinne IE & Tarkiainen E (1975) Chemical factors affecting algal growth off Helsinki. Merentutkimuslait. Julk. Havsforskninginst. Skr. 239: 91–99Google Scholar
  62. Ritschard RL (1992) Marine algae as a CO2sink. Water Air Soil Poll. 64: 289–303Google Scholar
  63. Rochford D (1958) Total phosphorus as a means of identifying East Australian water masses. Deep-Sea Research 5: 89–110Google Scholar
  64. Rudek J, Paerl HW, Mallin MA & Bates PW (1991) Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary,North Carolina. Marine Ecology Progress Series 75: 133–142Google Scholar
  65. Rydberg L & Sundberg J (1986) Seasonal nutrient supply to coastal waters. In: Marine Interfaces Ecohydrodynamics, 17th Annual Liege Colloquium on Ocean Hydrodynamics (pp 467–485). Elsevier Oceanography Series 42Google Scholar
  66. Ryther JH & Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008–1013Google Scholar
  67. Ryther JH & Guillard RRL (1959) Enrichment experiments as a means of studying nutrients limiting to phytoplankton production.Deep-Sea Research 6: 65–69Google Scholar
  68. Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv f¨ur Hydrobiologie 62: 1–28Google Scholar
  69. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. and Oceanography 33: 702–724Google Scholar
  70. Smayda TJ (1974) Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatom Thalassiosira pseudonana(oceanic clone, 13-1). Limnol. and Oceanography 19: 889–901Google Scholar
  71. Smith SV (1984) Phosphorus vs. nitrogen limitation in the marine environment. Limnol. and Oceanography 29: 1149–1160Google Scholar
  72. Smith SV & Veeh HH (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuarine, Coastal and Shelf Science 29: 195–215Google Scholar
  73. Smith SV, Kimmerer WJ & Walsh TW (1986) Vertical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific Gyre. Limnol. and Oceanography 31: 161–167Google Scholar
  74. Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671Google Scholar
  75. Strickland JH & Parsons TR (1968) A Practical Handbook of Seawater Analysis. Fisheries Res. Board Canada, OttawaGoogle Scholar
  76. Strickland JDH & Parsons TR (1972) A Practical Handbook of Seawater Analysis. Fisheries Res. Board Canada 167Google Scholar
  77. Suzuki Y, Sugimura Y & Ito T (1985) A catalytic oxidation method for the determination of total nitrogen dissolved in seawater. Marine Chemistry 16: 83–97Google Scholar
  78. Smayda TJ (1971) Further enrichment experiments using the marine centric diatom Cyclotella nana(clone 13-1) as an assay organism. In: Costlow JD (Ed) Fertility of the Sea, vol. 2 (pp 493–511). Gordon and Breach, NYGoogle Scholar
  79. Tarkiainen E, Rinne I & Niemisto L (1974) On the chemical factors regulating the primary production of phytoplankton in the Baltic proper. Merentutkimuslait. Julk. Havsforskningsinst. Skr. 238: 39–52Google Scholar
  80. Tett P (1990) The photic zone. In: Herring PJ, Campbell AK, Whitfield M & Maddock L (Eds) Light and Life in the Sea (pp 59–87). CambridgeGoogle Scholar
  81. Tranter DJ & Newell BS (1963) Enrichment experiments in the Indian Ocean. Deep-Sea Research 10: 1–9Google Scholar
  82. Treguer P & Le Corre P (1975) Manuel d'analyse des sels nutritifs dans l'eau de mer. Lab. Océanogr. Chimique, Univ. Brétagne Occident. BrestGoogle Scholar
  83. Updegraff DM, Stanton DJ & Spencer MJ (1977) Surface waters of Waimea Inlet and Nelson Haven: A preliminary assessment of quality. New Zealand Journal of Marine and Freshwater Research 11: 559–575Google Scholar
  84. Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122Google Scholar
  85. Vince S & Valiela I (1973) The effects of ammoniumand phosphate enrichments on chlorophyll a, pigment ratio, and species composition of phytoplankton of Vineyard Sound. Marine Biology 19: 69–73Google Scholar
  86. Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochem. 13: 87–115Google Scholar
  87. Williams PM(1967) Sea surface chemistry: Organic carbon and organic and inorganic nitrogen and phosphorus in surface films and subsurface waters. Deep-Sea Research 14: 791–800Google Scholar
  88. Winn C, Lukas R, Karl D & Firing E (1993) Hawaii Ocean Time-series Data Report 3, 1991. University of Hawaii, HonoluluGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
  1. 1.Department of Animal EcologyIowa State UniversityAmesUSA

Personalised recommendations