, Volume 53, Issue 1–2, pp 27–61

On The Logic Of Reducibility: Axioms And Examples

  • Karl-Georg Niebergall


This paper is an investigation into what could be a goodexplication of ``theory S is reducible to theory T''. Ipresent an axiomatic approach to reducibility, which is developedmetamathematically and used to evaluate most of the definitionsof ``reducible'' found in the relevant literature. Among these,relative interpretability turns out to be most convincing as ageneral reducibility concept, proof-theoreticalreducibility being its only serious competitor left. Thisrelation is analyzed in some detail, both from the point of viewof the reducibility axioms and of modal logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.: 1955, Axiomatic Foundations of Rigid Body Mechanics, Stanford University.Google Scholar
  2. Adams, E.: 1959, ‘The Foundations of Rigid Body Mechanics and the Derivation of its Laws from Those of Particle Mechanics', in Henkin, Suppes, Tarski (eds), The Axiomatic Method, North-Holland, Amsterdam.Google Scholar
  3. Balzer, W.: 1982, Empirische Theorien: Modelle, Strukturen,Beispiele, Vieweg, Braunschweig.Google Scholar
  4. Balzer, W., D. Pearce, and H.-J. Schmidt: 1984, Reduction in Science, Reidel, Dordrecht.Google Scholar
  5. Benthem van, J. and D. Pearce: 1984, ‘A Mathematical Characterization of Interpretation between Theories', Studia Logica 43, 295–303.Google Scholar
  6. Berarducci, A.: 1990, ‘The Interpretability Logic of Peano Arithmetic', Journal of Symbolic Logic 55, 1059–1089.Google Scholar
  7. Bonevac, D.: 1982, Reduction in the Abstract Sciences, Hackett, Indianapolis.Google Scholar
  8. Boolos, G.: 1993, The Logic of Provability, Cambridge University Press, Cambridge.Google Scholar
  9. Buchholz, W., S. Feferman, W. Pohlers, and W. Sieg: 1981, Iterated Inductive Definitions: Recent Proof-Theoretical Studies, Springer, Berlin.Google Scholar
  10. Eberle, R.: 1971, ‘Replacing One Theory by Another under Preservation of a Given Feature', Philosophy of Science 38, 486–501.Google Scholar
  11. Feferman, S.: 1960, ‘Arithmetization of Metamathematics in a General Setting', Fundamenta Mathematicae XLIX, 35–92.Google Scholar
  12. Feferman, S.: 1988, ‘Hilbert's Program Relativized: Proof-Theoretical and Foundational Reductions', Journal of Symbolic Logic 53, 364–384.Google Scholar
  13. Feferman, S.: 1993, ‘What Rests on What? The Proof-Theoretic Analysis of Mathematics', in J. Czermak (ed.), Philosophie der Mathematik, Akten des 15. Internationalen Wittgenstein-Symposiums, Hölder-Pichler-Tempsky, Wien, pp. 147–171.Google Scholar
  14. Feferman, S., G. Kreisel, and S. Orey: 1962, ‘1–Consistency and Faithful Interpretations', Archiv für Mathematische Logik und Grundlagenforschung 6, 52–63.Google Scholar
  15. Gajda, A., M. Krynicki, and L. Szczerba: 1987, ‘A Note on Syntactical and Semantical Functions', Studia Logica 46, 177–185.Google Scholar
  16. Gajda, A.: 1988, ‘The Adequacy Condition as a Definition of Elementary Interpretation', Studia Logica 47, 57–69.Google Scholar
  17. Gödel: 1931, ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I', Monatshefte für Mathematik und Physik 38, 173–198.Google Scholar
  18. Hájek, P. and M. Hájkova: 1972, ‘On Interpretability in Theories Containing Arithmetic', Fundamenta Mathematicae 76, 131–137.Google Scholar
  19. Hájek, P. and P. Pudlák: 1993, Metamathematics of First-Order Arithmetic, Springer-Verlag, Berlin.Google Scholar
  20. Hellman, G. and F. W. Thompson: 1975, ‘Physicalism: Ontology, Determination, and Reduction', Journal of Philosophy 72, 551–564.Google Scholar
  21. Hooker, C.: 1981, ‘Towards a General Theory of Reduction', Dialogue XX, 1–3, 38–59, 201–236, 496–529.Google Scholar
  22. Jongh de, D. and F. Veltman: 1990, ‘Provability Logics for Relative Interpretability', in P. P. Petkov (ed.), Mathematical Logic, Plenum Press, New York, pp. 31–42.Google Scholar
  23. Kaye, R.: 1991, Models of Peano Arithmetic, Clarendon Press, Oxford.Google Scholar
  24. Kreisel, G.: 1968, ‘A Survey of Proof Theory', Journal of Symbolic Logic 33, 321–388.Google Scholar
  25. Kreisel, G. and A. Levy: 1968, ‘Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems', Zeitschrift für mathematische Logik und Grundlagen der Mathematik 14, 97–142.Google Scholar
  26. Kunen, K.: 1980, Set Theory, North-Holland, Amsterdam.Google Scholar
  27. Lindström, P.: 1979, 'some Results on Interpretability', in Proceedings of the 5th Scandinavian Logic Symposium, 1979, Aalborg, pp. 329–361.Google Scholar
  28. Lindström, P.: 1984a, ‘On Faithful Interpretability', in M. Richter (eds), '83, Springer, Berlin, pp. 279–288.Google Scholar
  29. Lindström, P.: 1984b, ‘On Certain Lattices of Degrees of Interpretability', Notre Dame Journal of Formal Logic 25, 127–140.Google Scholar
  30. Lindström, P.: 1997, Aspects of Incompleteness, Springer, Berlin.Google Scholar
  31. Meseguer, J.: 1989, ‘General Logics', in H. D. Ebbinghaus et al. (eds), '87, Springer, Berlin, pp. 275–329.Google Scholar
  32. Montague, R.: 1962, ‘Theories Incomparable with Respect to Relative Interpretability', Journal of Symbolic Logic 27, 195–211.Google Scholar
  33. Montague, R.: 1965, ‘Interpretability in Terms ofModels', Indagationes Mathematicae 27, 467–476.Google Scholar
  34. Mycielski, J.: 1977, ‘A Lattice of Interpretability Types of Theories', Journal of Symbolic Logic 42, 297–305.Google Scholar
  35. Mycielski, J., P. Pudlák, and A. Stern: 1990, A Lattice of Chapters of Mathematics (Interpretations between Theorems), Memoirs of the American Mathematical Society, Vol. 84, No. 426, American Mathematical Society, Providence.Google Scholar
  36. Orey, S.: 1961, ‘Relative Interpretations', Journal of Symbolic Logic 7, 146–153.Google Scholar
  37. Pour-El, M. B. and S. Kripke: 1967, ‘Deduction-Preserving “Recursive Isomorphisms” between Theories', Fundamenta Mathematicae 61, 141–163.Google Scholar
  38. Pudlák, P.: 1983, ‘Some Prime Elements in the Lattice of Interpretability Types', Transactions of the American Mathematical Society 280, 255–275.Google Scholar
  39. Pudlák, P.: 1985, ‘Cuts, Consistency Statements and Interpretability', Journal of Symbolic Logic 50, 423–441.Google Scholar
  40. Schaffner, K.: 1967, ‘Approaches to Reduction', Philosophy of Science 34, 137–147.Google Scholar
  41. Schroeder-Heister, P. and F. Schaefer: 1989, ‘Reduction, Representation and Commensurability of Theories', Philosophy of Science 56, 130–157.Google Scholar
  42. Smory´nski, C.: 1985a, Self-Reference and Modal Logic, Springer, Berlin.Google Scholar
  43. Smory´nski, C.: 1985b, ‘Nonstandard Models and Related Developments', in L. Harrington et al. (eds), Harvey Friedman's Research on the Foundations of Mathematics, North-Holland, Amsterdam.Google Scholar
  44. Solovay, R. M.: 1976, ‘Provability Interpretations of Modal Logic', Israel Journal of Mathematics 25, 287–304.Google Scholar
  45. Suppes, P.: 1957, Introduction to Logic, Princeton.Google Scholar
  46. Szczerba, L.: 1977, ‘Interpretability of Elementary Theories', in R. Butts and J. Hintikka (eds), Logic, Foundations of Mathematics and Computing Theory, Reidel, Dordrecht, pp. 129–145.Google Scholar
  47. Szczerba, L.: 1980, ‘Interpretations with Parameters', Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 26, 35–39.Google Scholar
  48. Tarski, A., A. Mostowski, and R. M. Robinson: 1953, Undecidable Theories, North-Holland, Amsterdam.Google Scholar
  49. Tarski, A.: 1956, Logic, Semantics, Metamathematics, Clarendon Press, Oxford.Google Scholar
  50. Visser, A.: 1990, ‘Interpretability Logic', in P. P. Petkov (ed.), Mathematical Logic, Plenum Press, New York, pp. 175–208.Google Scholar
  51. Visser, A.: 1997, ‘An Overview of Interpretability Logic', Preprint, University of Utrecht.Google Scholar
  52. Zambella, D.: ‘On the Proofs of Arithmetical Completeness for Interpretability Logic', Notre Dame Journal of Formal Logic 33, 542–551.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Karl-Georg Niebergall
    • 1
  1. 1.Institut für Philosophie Logik & WissenschaftstheorieLudwig-Maximilians UniversitätMunchenGermany

Personalised recommendations