Biotechnology Letters

, Volume 23, Issue 5, pp 359–364 | Cite as

Cell size as a tool to predict the production of recombinant protein by the insect-cell baculovirus expression system

  • Laura A. Palomares
  • Juan Carlos Pedroza
  • Octavio T. Ramírez

Abstract

The increase of Sf9 cell diameter after infection with a recombinant baculovirus encoding VP8 protein of rotavirus can be used to predict culture productivity. A direct proportional correlation between the increase in cell size and VP8 concentration was obtained when manipulating selected medium components. Only yeast extract increased (38%) VP8 concentration, while fetal bovine serum increased (55%) the maximum cell concentration. An inexpensive and simplified culture media can thus be designed without detriment to protein yields.

baculovirus culture monitoring insect cell size metabolism recombinant protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chai H, Al-Rubeai M, Chua KL, Oh SKW, Yap MGS (1996) Insect cell line dependent gene expression of recombinant tumor necrosis factor-β. Enzyme Microbiol. Technol. 18: 126-132.Google Scholar
  2. Drews M, Paalme T, Vilu R (1995) The growth and nutrient utilization of insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J. Biotechnol. 40: 187-198.Google Scholar
  3. Ferrance J, Goel A, Ataai M (1993) Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within the primary pathways and medium development. Biotechnol. Bioeng. 42: 697-707.Google Scholar
  4. Goodwin RH (1991) Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissue, parasites and pathogens. In Vitro Cell Dev. Biol. 24A: 470-478.Google Scholar
  5. Hink WF (1970) Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226: 466-467.Google Scholar
  6. Jain D, Ramasumbramanyan K, Gould S, Seamans C, Wang S, Lenny A, Silberklang M (1991) Production of antistasin using the baculovirus expression system. In: Hatch R, Gooche C, Moreira A, Alroy Y, eds. Expression Systems and Processes for rDNA Products. ACS Symposium Series No. 477. Washington: Amer. Chem. Soc., pp. 97-110.Google Scholar
  7. Jayme W (1991) Nutrient optimization for high density biological production applications. Cytotechnology 5: 15-30.Google Scholar
  8. Kamen AA, Bédard C, Tom R, Perret S, Jardin B (1996) Online monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol. Bioeng. 50: 36-48.Google Scholar
  9. Ljunggren J, Alarcon M, Ramqvist A-K, Westlund A, Öhman L (1999) A method to determine the optimal time to infect insect cells with the baculovirus expression system. In: Bernard A, Griffiths B, Noé W, Wurm F, eds. Animal Cell Technology: Products from Cells, Cells as Products. Dordrecht: Kluwer Academic Publishers, pp. 359-361.Google Scholar
  10. Mendonça RZ, Palomares LA, Ramírez OT (1999) An insight into insect cell metabolism through selective nutrient manipulation. J. Biotechnol. 72: 61-75.Google Scholar
  11. Meneses-Acosta A, Mendonça RZ, Merchant H, Covarrubias L, Ramírez OT (2001) Comparative characterization of cell death between Sf9 insect cells and hybridoma cultures. Biotechnol. Bioeng., in press.Google Scholar
  12. Öhman L, Alarcon M., Ljunggren J, Ramqvist A, Häggstrom L (1996) Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnol. Lett. 18: 765-770.Google Scholar
  13. Öhman L, Ljunggren J, Haggstrom L (1995) Introduction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Appl. Microbiol. Biotechnol. 43: 1-8.Google Scholar
  14. Palomares LA, Ramírez OT (1996). The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22: 225-237.Google Scholar
  15. Palomares LA, González M, Ramírez OT (2000) Evidence of Pluronic F-68 direct interaction with insect cells: impact on shear protection, recombinant protein and baculovirus production. Enzyme Microbiol. Technol. 26: 324-331.Google Scholar
  16. Ramírez OT, Mutharasan R (1990) Cell cycle and growth phasedependant variations in size distributions, antibody productivity, and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 36: 839-848.Google Scholar
  17. Rosinski M, Reid S, Nielsen LK (2000) Osmolarity effects on observed cell size after baculovirus are avoided using growth medium for sample dilution. Biotechnol. Prog. 16: 782-785.Google Scholar
  18. Schopf B, Howaldt MW, Bailey JE (1990) DNA distribution and respiratory activity of Spodoptera frugiperda populations infected with wild-type and recombinant Autographa californica nuclear polyhedrosis virus. J. Biotechnol. 15: 169-186.Google Scholar
  19. Taticek RA, Shuler ML (1997) Effect of elevated oxygen and glutamine level on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol. Bioeng. 54: 142-152.Google Scholar
  20. Wang M, Vakharia V, Bentley W (1993) Expression of epoxide hydrolase in insect cells: a focus on the infected cell. Biotechnol. Bioeng. 42: 240-247.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Laura A. Palomares
    • 1
  • Juan Carlos Pedroza
    • 2
  • Octavio T. Ramírez
    • 1
  1. 1.Departamento de Bioingeniería, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca MorelosMéxico
  2. 2.Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosMéxico

Personalised recommendations