Climatic Change

, Volume 46, Issue 3, pp 225–246 | Cite as

Climate Impact Response Functions: An Introduction

  • Ferenc L. Toth
  • Wolfgang Cramer
  • Eva Hizsnyik


The concept of climate impact response function is introduced and placed into the context of integrated assessment models to analyze policy options under climate change constraints. An example of developing such response functions is presented that entails a global model of potential natural vegetation driven by a climate change pattern derived from a general circulation model. A large array of strenuous issues are introduced that will be addressed by the set of papers included in this Special Issue.


Climate Change Response Function Circulation Model General Circulation Natural Vegetation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clark, W.C.: 1986, ‘Sustainable development of the biosphere: themes for a research program’, in W.C. Clark and R.E. Minn (eds.), Sustainable Development of the Biosphere, Cambridge University Press, Cambridge, UK, pp. 5-48.Google Scholar
  2. Cramer, W.P. and Solomon, A.M.: 1993, ‘Climatic classification and future global redistribution of agricultural land’, Climate Research 3, 97-110.Google Scholar
  3. Cramer, W.P. and Steffen, W.: 1997, ‘Forecast changes in the global environment: what they mean in terms of ecosystem responses on different time-scales’, in B. Huntley et al. (eds.), The Spatial and Evolutionary Responses of Terrestrial Biota, Springer, Berlin, pp. 415-426.Google Scholar
  4. Dinar, A., Mendelsohn, R., Evenson, R., Parikh, J., Sanghi, A., Kumar, K., McKinsey, J., Lonergan, S.: 1998, Measuring the Impact of Climate Change on Indian Agriculture, The World Bank, Washington, DC.Google Scholar
  5. DKRZ (Deutsches Klimarechenzentrum): 1993, The ECHAM3 Atmospheric General Circulation Model, Hamburg, Germany.Google Scholar
  6. Fischer, G., Frohberg, K., Parry, M.L. and Rosenzweig, C.: 1993, ‘Climate change and world food supply, demand, and trade’, in Y. Kaya, N. Nakicenovic, W.D. Nordhaus, and F.L. Toth, (eds.), Costs, Impacts, and Benefits of CO 2 Mitigation, CP-93-2, International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 133-151.Google Scholar
  7. IPCC (Intergovernmental Panel on Climate Change): 1996a, Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Edited by R.T. Watson, M.C. Zinyowera, R.H. Moss, Cambridge University Press, Cambridge, UK.Google Scholar
  8. IPCC (Intergovernmental Panel on Climate Change): 1996b Climate Change 1995. The Science of Climate Change, Edited by J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Cambridge University Press, Cambridge, UK.Google Scholar
  9. Leemans, R.: 1989, ‘Possible changes in natural vegetation patterns due to a global warming’, in A. Hackl (ed.) Der Treibhauseffekt: das Problem-Mögliche Folgen-Erforderliche Maßnahmen, Akademie für Umwelt und Energie, Laxenburg, Austria, pp. 105-122.Google Scholar
  10. Leemans, R. and Cramer, W.P.: 1991, The IIASA Database for Mean Monthly Values of Temperature, Precipitation, and Cloudiness on a Global Terrestrial Grid, RR-91-18, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  11. Mendelsohn, R., Nordhaus, W.D. and Shaw, D.: 1994, ‘The impact of global warming on agriculture: a Ricardian approach’, American Economic Review 84, 753-771.Google Scholar
  12. Mendelsohn, R., Nordhaus, W.D. and Shaw, D.: 1996, ‘Climate impacts on aggregate farm value: accounting for adaptation’, Agricultural and Forest Meteorology 80, 55-66.Google Scholar
  13. Moss, R.H.: 1995, ‘Avoiding “dangerous” interference in the climate system’, Global Environmental Change 5(1), 3-6.Google Scholar
  14. Parry, M.L., Carter, T.R. and Hulme, M.: 1996, ‘What is a dangerous climate change?’, Global Environmental Change 6(1), 3-6.Google Scholar
  15. Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. and Solomon, A.M.: 1992, ‘A global biome model based on plant physiology and dominance, soil properties and climate’, Journal of Biogeography 19, 117-134.Google Scholar
  16. Rosenberg, N.J.: 1993, ‘Towards and integrated impact assessment of climate change: the MINK study’, Climatic Change 24(1-2) Special Issue.Google Scholar
  17. Roeckner, E., K. Arpe, L. Bengtsson, S Brinkop, L. Dümenil, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schlese, S. Schubert, and M. Windelband: 1992, ‘Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution’, Report No. 93, Max-Planck-Institut für Meteorologie, Hamburg, Germany.Google Scholar
  18. Schneider, S.H. and Root, T.L.: 1996, ‘Ecological implications of climate change will include surprises’, Biodiversity and Conservation 5, 1109-1119.Google Scholar
  19. Schneider, S.H. and Turner II, B.L.: 1996, ‘Imaginable surprise in global change science’, Manuscript.Google Scholar
  20. Simmons, A.J. and Chen, J.: 1991, ‘The calculation of geopotential and pressure-gradient in the ECMWF atmospheric model: influence on the simulation of the polar atmosphere and on temperature analyses’, Quarterly Journal of the Royal Meteorological Society 117, 29-58.Google Scholar
  21. Smith, T.M., Weishampel, J.F., Shugart, Jr., H.H. and Bonan, G.B.: 1992, ‘The response of terrestrial carbon storage to climate change: modeling C dynamics at varying temporal and spatial scales’, Water, Air and Soil Pollution 64, 307-326.Google Scholar
  22. Steffen, W.L., Cramer, W., Plöchl, M. and Bugmann, H.: 1996, ‘Global vegetation models: incorporating transient changes to structure and composition’, Journal of Vegetation Science 7, 321-328.Google Scholar
  23. UNFCCC: 1992, United Nations Framework Convention on Climate Change, New York, 9 May 1992, in force 21 March 1994, in: 31 International Legal Materials 849 (1992).Google Scholar
  24. WBGU: 1995, Scenario for the Derivation of Global CO 2 Reduction Targets and Implementation Strategies, German Advisory Board on Global Change, Bremerhaven, Germany.Google Scholar
  25. Wigley, T.M.L., Richels, R. and Edmonds, J.A.: 1996, ‘Economics and environmental choices in the stabilization of atmospheric CO2 concentrations’, Nature 379, 240-243.Google Scholar
  26. Woodward, F.I. and Cramer, W.: 1996, ‘Plant functional types and climatic changes: introduction’, Journal of Vegetation Science 7, 306-308.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ferenc L. Toth
    • 1
  • Wolfgang Cramer
    • 1
  • Eva Hizsnyik
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations