Journal of Chemical Ecology

, Volume 27, Issue 2, pp 217–233 | Cite as

Angiosperm Bark Volatiles Disrupt Response of Douglas-Fir Beetle, Dendroctonus pseudotsugae, to Attractant-Baited Traps

  • Dezene P. W. Huber
  • John H. Borden


Antennally active, bark-derived, angiosperm volatiles were tested singly and in groups for their ability to disrupt the response of the Douglas-fir beetle (DFB), Dendroctonus pseudotsugae, to attractant-baited multiple-funnel traps. One compound, conophthorin, was active alone in reducing the response of beetles to the baited traps. Further experiments showed disruptive activity in two aliphatic green-leaf alcohols [1-hexanol and (Z)-3-hexen-1-ol], as well as guaiacol and benzyl alcohol, and three aliphatic aldehydes [nonanal, hexanal, and (E)-2-hexenal] but not in two aromatic aldehydes (benzaldehyde and salicylaldehyde). Every binary combination that included conophthorin or any two of the other groups, except aromatic aldehydes, significantly reduced the response of beetles to baited traps. Various ternary mixtures and the complete mixture of all the groups were generally the most effective treatments. These results provide evidence that DFBs recognize and avoid nonhosts while flying rather than landing on candidate hosts and testing them while in contact with the tree. Nonhost angiosperm bark volatiles may have practical utility on their own or in combination with the antiaggregation pheromone 3-methylcyclohex-3-en-1-one (MCH) to protect single trees, logs, or stands from attack by the DFB.

Douglas-fir beetle Dendroctonus pseudotsugae Coleoptera Scolytidae nonhost volatiles green-leaf volatiles disruptant 3-methylcyclohex-3-en-1-one MCH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BIRGERSSON, G., DEBARR, G. L., DE GROOT, P., DALUSKY, M. J., PIERCE, H. D., JR., BORDEN, J. H., MEYER, H., FRANCKE, W., ESPELIE, K. E., and BERISFORD, C. W. 1995. Pheromones in the white pine cone beetle, Conophthorous coniperda(Schwarz) (Coleoptera: Scolytidae). J. Chem. Ecol.21:143-167.Google Scholar
  2. BORDEN, J. H., CHONG, L. J., SAVIOE, A., and WILSON, I. M. 1997. Responses to green leaf volatiles in two biogeoclimatic zones by striped ambrosia beetle, Trypodendron lineatum. J. Chem. Ecol.27:2479-2491.Google Scholar
  3. BORDEN, J. H., WILSON, I. M., GRIES, R., CHONG, L. J., PIERCE, H. D., JR., and GRIES, G. 1998. Volatiles from the bark of trembling aspen, Populus tremuloidesMichx. (Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosaeHopkins (Coleoptera: Scolytidae). Chemoecology8:69-75.Google Scholar
  4. BYERS, J. A., ZHANG, Q.-H., and SCHLYTER, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften85:557-561.Google Scholar
  5. DALLARA, P. L., SEYBOLD, S. J., FRANCKE, W., and WOOD, D. L. 1994. The chemical ecology of Pityophthorus Eichhoff(Coleoptera: Scolytidae) in central coastal California, Appendix, pp. Ixviii-Ixix, inD. H. Adams, J. E. Rios, and A. J. Storer (eds.). Proceedings, 43rd Anual Meeting of the California Forest Pest Council, Rancho Cordova, California.Google Scholar
  6. DAY, R. W., and QUINN, G. P. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr.59:433-463.Google Scholar
  7. DEGLOW, E. K., and BORDEN, J. H. 1998a. Green leaf volatiles disrupt and enhance response by the ambrosia beetle, Gnathotrichus retusus(Coleoptera: Scolytidae) to pheromone-baited traps. J. Entomol. Soc. BC.95:9-15.Google Scholar
  8. DEGLOW, E. K., and BORDEN, J. H. 1998b. Green leaf volatiles disrupt and enhance response to aggregation pheromones by the ambrosia beetle, Gnathotrichus sulcatus(Coleoptera: Scolytidae). Can. J. For. Res.28:1697-1705.Google Scholar
  9. DICKENS, J. C., BILLINGS, R. F., and PAYNE, T. L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia48:523-524.Google Scholar
  10. FRANCKE, W., HINDORF, G., and REITH, W. 1978. Methyl-1,6-dioxaspiro[4,5]decanes as odors of Paravespula vulgaris(L.). Angew. Chem. Int. Ed. Engl.17:862.Google Scholar
  11. HUBER, D. P. W., GRIES, R., BORDEN, J. H., and PIERCE, H. D., JR. 1999. Two pheromones of coniferophagous bark beetles (Coleoptera: Scolytidae) found in the bark of nonhost angiosperms. J. Chem. Ecol.25:805-816.Google Scholar
  12. HUBER, D. P. W., GRIES, R., BORDEN, J. H., and PIERCE, H. D., JR. 2000. A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees. Chemoecology. In press.Google Scholar
  13. HUMPHREYS, N. 1995. Douglas-fir beetle in British Columbia. Forest Pest Leaflets. Natural Resources Canada, Canadian Forest Service. Cat. No. Fo 29-6/14-1995E.Google Scholar
  14. KOHNLE, U., DENSBORN, S., KöLSCH, P., MEYER, H., and FRANCKE, W. 1992. (E)-7-Methyl-1,6-dioxaspiro[4.5]decane in the chemical communication of European Scolytidae and Nitidulidiae (Coleoptera). J. Appl. Entomol.114:187-192.Google Scholar
  15. LINDGREN, B. S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Entomol.115:299-302.Google Scholar
  16. LINDGREN, B. S., GRIES, G., PIERCE, H. D., JR., and MORI, K. 1992. Dendroctonus pseudotsugaeHopkins (Coleoptera: Scolytidae): Production of and response to enantiomers of 1-methylcyclohex-2-en-1-ol.Google Scholar
  17. MCMULLEN, L. S., and ATKINS, M. D. 1962. On the flight and host selection of the Douglas-fir beetle, Dendroctonus pseudotsugaeHopk. (Coleoptera: Scolytidae). Can. Entomol.94:1309-1325.Google Scholar
  18. MOECK, H. A., WOOD, D. L., and LINDAHL, K. Q. 1981. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosae, with special emphasis on the western pine beetle, Dendroctonus brevicomis. J. Chem. Ecol.7:49-83.Google Scholar
  19. NORIN, T. 1996. Chiral chemodiversity and its role for biological activity. Some observations from studies on insect/insect and insect/plant relationships. Pure Appl. Chem.68:2043-2049.Google Scholar
  20. PERSSON, M., SJöDIN, K. BORG-KARLSON, A-K., NORIN, T., and EKBERG, I. 1996. Relative amounts and enantiomeric compositions of monoterpene hydrocarbons in xylem and needles of Picea abies.Phytochemistry 42:1289-1297.Google Scholar
  21. PIERCE, H. D., JR., DE GROOT, P., BORDEN, J. H., RAMASWAMY, S., and OEHLSCHLAGER, A. C. 1995. Pheromones in red pine cone beetle, Conophthorus resinosaeHopkins, and its synonym, C. banksianaeMcPherson (Coleoptera: Scolytidae). J. Chem. Ecol.21:169-185.Google Scholar
  22. POLAND, T. M., and HAACK, R. A. 1999. Pine shoot beetle, Tomicus piniperda(Coleoptera: Scolytidae), responses to common green leaf volatiles. J. Appl. Entomol.In press.Google Scholar
  23. POLAND, T. M., BORDEN, J. H., STOCK, A. J., and CHONG, L. J. 1998. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis(Coleoptera: Scolytidae) to attractant-baited traps. J. Entomol. Soc. BC.95:17-24.Google Scholar
  24. ROSS, D. W., and DATERMAN, G. E. 1995. Response of Dendroctonus pseudotstugae(Coleoptera: Scolytidae) and Thanasimus undatulus(Coleoptera: Cleridae) to traps with different semiochemicals. J. Econ. Entomol.88:106-111.Google Scholar
  25. ROSS, D. W., GIBSON, K. E., THIER, R. W., and MUNSON, A. S. 1996. Optimal dose of an antiaggregation pheromone (3-methylcyclohex-2-en-1-one) for protecting live Douglas-fir from attack by Dendroctonus pseudotsugae(Coleoptera: Scolytidae). J. Econ. Entomol.89:1204-1207.Google Scholar
  26. RUDINSKY, J. A., FURNISS, M. M., KLINE, L. N., and SCHMITZ, R. F. 1972. Attraction and repression of Dendroctonus pseudotsugae(Coleoptera: Scolytidae) by three synthetic pheromones in traps in Oregon and Idaho. Can. Entomol.104:815-822.Google Scholar
  27. SAS INSTITUTE, INC. 1988. SAS/STAT Users Guide, Release 6.03 Edition. Cary, North Carolina.Google Scholar
  28. SCHROEDER, L. M. 1992. Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperdaand Hylurgops palliatus. J. Chem. Ecol.18:1583-1593.Google Scholar
  29. SJöDIN, K., PERSSON, M., BORG-KARLSON, A-K., and TORBJöRN, H. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 41:439-445.Google Scholar
  30. WANG, X., LIU, Y-S., NAIR, U. B., ARMSTRONG, D. W., ELLIS, B., and WILLIAMS, K. M. 1997. Enantiomeric composition of monoterpenes in conifer resins. Tetrahedron Asymmetry8:3977-3984.Google Scholar
  31. WIBE, A., BORG-KARLSON, A-K., PERSSON, M., NORIN, T., and MUSTAPARTA, H. 1998. Enantiomeric composition of monoterpene hydrocarbons in some conifers and receptor neuron discrimination of a-pinene and limonene enantiomers in the pine weevil, Hylobius abiietis. J. Chem. Ecol.24:273-287.Google Scholar
  32. WILSON, I. M., BORDEN, J. H., GRIES, R., and GRIES, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosaeHopkins (Coleoptera: Scolytidae). J. Chem. Ecol.22:1861-1875.Google Scholar
  33. ZAR, J. H. 1984. Data Transformations. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 236-242.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Dezene P. W. Huber
    • 1
  • John H. Borden
    • 1
  1. 1.Centre for Environmental Biology, Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations