Biotechnology Letters

, Volume 22, Issue 21, pp 1679–1684 | Cite as

Continuous malolactic fermentation by Oenococcus Oeni entrapped in LentiKats

  • A. Durieux
  • X. Nicolay
  • J.-P. Simon


A continuous process to deacidify apple juices and cider was developed by entrapping Oenococcus oeni in LentiKats, a new polyvinyl alcohol hydrogel. For a residence time of 0.55 h, malic acid was completely converted into lactic acid when the LentiKats bioreactor was fed with apple juice at pH 4.46 and 3.95 and thirty three percent of initial malic acid (6.7 g l−1) was converted when the initial apple juice pH was 2.30. The optimal malolactic activity of this bioreactor was obtained at 30 °C and a 50% reduction in malic acid conversion was measured between 15 °C and 20 °C, at a residence time of 0.3 h. The LentiKats bioreactor gave better performance than continuous reactor with Oenococcus oeni immobilised in alginate beads (specific malic acid consumption increased by a factor of 4.6) due to the increase of the ratio external surface to volume, allowing better mass transfer.

cider continuous fermentation immobilisation LentiKats Oenococcus oeni 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabranes C, Moreno J, Mangas JJ (1998) Cider production with immobilized Leuconostoc oenos. J. Inst. Brew. 104: 127–130.Google Scholar
  2. Davis CR, Wibowo D, Eschenbruch R, Lee TH, Fleet GH (1985) Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic. 36: 290–301.Google Scholar
  3. Ding WA, Vorlop KD (1995) Gel aus Polyvinylalkohol und Verfahren zu seiner Herstellung. Patent DE 4327923.Google Scholar
  4. Durieux A, Garre V, Mukamana J, Jourdain JM, Silva D, Plaisant AM, Defroyennes JP, Foroni G, Simon JP (1996) Leuconostoc oenos entrapment: applications to continuous malolactic fermentation. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J, eds. Immobilized Cells: Basics and Applications. Amsterdam: Elsevier Sciences, pp. 679–686.Google Scholar
  5. Jarvis B, Forster MJ, Kinsella WP (1995) Factors affecting the development of cider flavour. J. Appl. Bacteriol. Symp. Suppl. 79: 5S–18S.Google Scholar
  6. Jekel M, Buhr A, Wilke T, Vorlop KD (1998) Immobilization of biocatalysts in LentiKats. Chem. Eng. Technol. 21: 275–278.Google Scholar
  7. Lonvaud-Funel A, Strasser de Saad AM (1982) Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol. 43: 357–361.Google Scholar
  8. Masschelein CA, Ryder DS, Simon JP (1994) Immobilized cell technology in beer production. Crit. Rev. Biotechnol. 14: 155–177.Google Scholar
  9. Nedovic VA, Durieux A, Van Nedervelde L, Rosseels P, Vandegans J, Plaisant AM, Simon JP (2000) Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme Microbiol. Technol. 26: 834–839.Google Scholar
  10. Nielsen JC, Richelieu M (1999) Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Appl. Environ. Microbiol. 65: 740–745.PubMedGoogle Scholar
  11. Plieva FM, Kochetkov KA, Singh I, Parmar VS, Belokon YN, Lozinsky VI (2000) Immobilization of hog pancreas lipase in macroporous poly(vinyl alcohol)-cryogel carrier for biocatalysis in water-poor media. Biotechnol. Lett. 22: 551–554.Google Scholar
  12. Prüsse U, Fox B, Kirchkoff M, Bruske F, Bredford J, Vorlop K-D (1998) New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21: 29–33.Google Scholar
  13. Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl. Environ. Microbiol. 60: 1459–1466.PubMedGoogle Scholar
  14. Senuma Y, Lowe C, Zweifel, Hilborn JG, Marison I (2000) Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioeng. 67: 616–622.PubMedGoogle Scholar
  15. Spettoli P, Nuti MP, Zamorani A (1984) Properties of malolactic activity purified from Leuconostoc oenos ML34 by affinity chromatography. Appl. Environ. Microbiol. 48: 900–901.Google Scholar
  16. Wittlich P, Lutz J, Reimann C, Wilke T, Vorlop K-D (1999) Bioconversion of glycerol to 1,3-Propanediol. In: Proceedings of the 6th Symposium on Renewable Resources (Bonn), pp. 524–532. ISBN 3–7843–3019–3.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. Durieux
    • 1
  • X. Nicolay
    • 1
  • J.-P. Simon
    • 1
  1. 1.Unité de BioTechnologieInstitut Meurice, Campus CERIABrusselsBelgium

Personalised recommendations