Advertisement

Biotechnology Letters

, Volume 22, Issue 3, pp 177–181 | Cite as

Protective role of astaxanthin against u.v.-B irradiation in the green alga Haematococcus pluvialis

  • Makio Kobayashi
  • Takashi Okada
Article

Abstract

Cyst cells of the green alga Haematococcus pluvialis accumulate astaxanthin with maturation of the resting stage. To study the protective role of astaxanthin against u.v. damage, both immature (astaxanthin-poor) and mature (astaxanthin-rich) cyst cells were exposed to u.v.-A or u.v.-B irradiation, and the residual cell viability and astaxanthin levels were determined. u.v.-B decreased both cell viability and astaxanthin level of cyst cells to a greater extent than u.v.-A. Tolerance of mature cyst cells to u.v.-B was 6-fold higher than that of immature cyst cells. These results indicated that astaxanthin in cyst cells functions as a protective agent against u.v.-B irradiation.

antioxidant astaxanthin Haematococcus pluvialis oxidative stress u.v.-B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benemann JR (1992)Microalgae aquaculture feeds. J. Appl. Phycol. 4: 233–245.Google Scholar
  2. Black HS (1998) Radical interception by carotenoids and effects on UV carcinogenesis. Nutr. Cancer 31: 212–217.PubMedGoogle Scholar
  3. Cordero B-Otero A-Patiño M-Arredondo BO-Fabregas J (1996) Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions. Biotechnol. Lett. 18: 213–218.Google Scholar
  4. Ehling-Schulz M-Bilger W-Scherer S (1997)UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940–1945.PubMedGoogle Scholar
  5. Fan L-Vonshak A-Boussiba S (1994)Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30: 829–833.Google Scholar
  6. Fan L-Vonshak A-Zarka A-Boussiba S (1998)Does astaxanthin protect Haematococcus against light damage? Z. Naturforsh. 53c: 93–100.Google Scholar
  7. Fukuzawa K-Inokami Y-Tokumura A-Terao J-Suzuki A (1998)Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and tocopherol in liposomes. Lipids 33: 751–756.PubMedGoogle Scholar
  8. Gotz T-Windhovel U-Böger P-Sandmann G (1999)Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC 7942. Plant Physiol. 120: 599–604.PubMedGoogle Scholar
  9. Hirayama O-Nakamura K-Hamada S-Kobayashi Y (1994)Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29: 149–150.PubMedGoogle Scholar
  10. Kobayashi M-Kakizono T-Nagai S (1991)Astaxanthin production by a green alga-Haematococcus pluvialis accompanied with morphological changes in acetate media. J. Ferment. Bioeng. 71: 335–339.Google Scholar
  11. KobayashiM-Kakizono T-Nishio N-Nagai S (1992)Effects of light intensity-light quality-and illumination cycle on astaxanthin or181 mation in a green alga-Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61–63.Google Scholar
  12. Kobayashi M-Kakizono T-Nagai S (1993)Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga-Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867–873.Google Scholar
  13. Kobayashi M-Kurimura Y-Kakizono T-Nishio N-Tsuji Y (1997a) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84: 94–97.Google Scholar
  14. Kobayashi M-Hirai N-Kurimura Y-Ohigashi H-Tsuji Y (1997b) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul. 22: 79–85.Google Scholar
  15. Kobayashi M-Kurimura Y-Tsuji Y (1997c) Light-independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 19: 507–509.Google Scholar
  16. Kobayashi M-Kakizono T-Nishio N-Nagai S-Kurimura Y-Tsuji Y (1997d) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48: 351–356.Google Scholar
  17. Kobayashi M-Sakamoto Y (1999)Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21: 265–239.Google Scholar
  18. Malanga G-Puntarulo S (1995)Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation. Physiol. Plant 94: 672–679.Google Scholar
  19. O'Connor I-O'Brien N (1998)Modulation of UVA light-induced oxidative stress by-carotene-lutein and astaxanthin in cultured fibroblast. J. Dermatol. Sci. 16: 226–230.PubMedGoogle Scholar
  20. Savoure N-Briand G-Amory-Touz MC-Combre A-Maudet M-Nicol M (1995)Vitamin A status and metabolism of cutaneous polyamines in the hairless mouse after UV irradiation: action of-carotene and astaxanthin. Int. J. Vitam. Nutr. Res. 65: 79–86.PubMedGoogle Scholar
  21. Tjahjono AE-Hayama Y-Kakizono T-Terada Y-Nishio N-Nagai S (1994a) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol. Lett. 16: 133–138.Google Scholar
  22. Tjahjono AE-Kakizono T-Hayama Y-Nishio N-Nagai S (1994b) Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis-and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. J. Ferment. Bioeng. 77: 352–357.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Makio Kobayashi
    • 1
    • 1
    • 1
  • Takashi Okada
    • 1
    • 1
    • 1
  1. 1.Research Laboratory of Higashimaru Shoyu Co., Ltd.HyogoJapan

Personalised recommendations