Climatic Change

, Volume 46, Issue 3, pp 289–303 | Cite as

On the Response of the Greenland Ice Sheet to Greenhouse Climate Change

  • Ralf Greve


Numerical computations are performed with the three-dimensional polythermal ice-sheet model SICOPOLIS in order to investigate the possible impact of a greenhouse-gas-induced climate change on the Greenland ice sheet. The assumed increase of the mean annual air temperature above the ice covers a range from ΔT = 1°C to 12°C, and several parameterizations for the snowfall and the surface melting are considered. The simulated shrinking of the ice sheet is a smooth function of the temperature rise, indications for the existence of critical thresholds of the climate input are not found. Within 1000 model years, the ice-volume decrease is limited to 10% of the present volume for ΔT ≤ 3°C, whereas the most extreme scenario, ΔT = 12°C, leads to an almost entire disintegration, which corresponds to a sea-level equivalent of 7 m. The different snowfall and melting parameterizations yield an uncertainty range of up to 20% of the present ice volume after 1000 model years.


Critical Threshold Uncertainty Range Surface Melting Extreme Scenario Present Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolzan, J.F. and Strobel, M.: 1994, ‘Accumulation-rate variations around Summit, Greenland’, Journal of Glaciology 40(134), 56-66.Google Scholar
  2. Braithwaite, R.J.: 1995, ‘Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling’, Journal of Glaciology 41(137), 153-160.Google Scholar
  3. Braithwaite, R.J. and Olesen, O.B.: 1989, ‘Calculation of glacier ablation from air temperature, West Greenland’, in J. Oerlemans (ed.), Glacier fluctuations and climatic change, Kluwer, Dordrecht, pp. 219-233.Google Scholar
  4. Calov, R. and Hutter, K.: 1996, ‘The thermomechanical response of the Greenland ice sheet to various climate scenarios’, Climate Dynamics 12, 243-260.Google Scholar
  5. Calov, R. and Marsiat, I.: 1998, ‘Simulations of the northern hemisphere through the last glacial-interglacial cycle with a vertically integrated and a 3-d thermomechanical ice sheet model coupled to a climate model’, Annals of Glaciology 27, 169-176.Google Scholar
  6. Clarke, G.K.C., Nitsan, U., and Paterson, W.S.B.: 1977, ‘Strain heating and creep instability in glaciers and ice sheets’, Reviews of Geophysics and Space Physics 15(2), 235-247.Google Scholar
  7. De Wolde, J.R., Huybrechts, P., Oerlemans, J., and van de Wal, R.S.W.: 1997, ‘Projections of global mean sea-level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models’, Tellus 49A, 486-502.Google Scholar
  8. Fabré, A., Letréguilly, A., Ritz, C., and Mangeney, A.: 1995, ‘Greenland under changing climates: sensitivity experiments with a new three-dimensional ice sheet model’, Annals of Glaciology 21, 1-7.Google Scholar
  9. Fowler, A.C. and Larson, D.A.: 1978, ‘On the flow of polythermal glaciers. I. Model and preliminary analysis’, Proceedings of the Royal Society London A-363, 217-242.Google Scholar
  10. Greve, R.: 1997a: ‘A continuum-mechanical formulation for shallow polythermal ice sheets’, Philosophical Transactions of the Royal Society London A-355(1726), 921-974.Google Scholar
  11. Greve, R.: 1997b, ‘Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios’, Journal of Climate 10(5), 901-918.Google Scholar
  12. Greve, R.: 1997c, ‘Large-scale ice-sheet modelling as a means of dating deep ice cores in Greenland’, Journal of Glaciology 43(144), 307-310; Erratum 43(145), 597-600.Google Scholar
  13. Greve, R. and MacAyeal, D.R.: 1996, ‘Dynamic/thermodynamic simulations of Laurentide ice sheet instability’, Annals of Glaciology 23, 328-335.Google Scholar
  14. Greve, R., Weis, M., and Hutter, K.: 1998, ‘Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of Summit: An approach by large-scale modelling’, Palaeoclimates 2(2-3), 133-161.Google Scholar
  15. Heinrich, H.: 1988, ‘Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years’, Quaternary Research 29, 142-152.Google Scholar
  16. Hutter, K.: 1982, ‘A mathematical model of polythermal glaciers and ice sheets’, Journal of Geophysical and Astrophysical Fluid Dynamics 21, 201-224.Google Scholar
  17. Hutter, K.: 1993, ‘Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate’, Journal of Glaciology 39(131), 65-86.Google Scholar
  18. Huybrechts, P.: 1994, ‘The present evolution of the Greenland ice sheet: an assessment by modelling’, Global and Planetary Change 9, 39-51.Google Scholar
  19. Huybrechts, P., Letr´eguilly, A., and Reeh, N.: 1991, ‘The Greenland ice sheet and greenhouse warming’, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 89, 399-412.Google Scholar
  20. IPCC, 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge.Google Scholar
  21. Johnsen, S.J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: 1995, ‘Greenland palaeotemperatures derived from GRIP borehole temperature and ice core isotope profiles’, Tellus 47B, 624-629.Google Scholar
  22. Kapsner, W.R., Alley, R.B., Shuman, C.A., Anandakrishnan, S. and Grootes, P.M.: 1995, ‘Dominant influence of atmospheric circulation on snow accumulation in greenland over the past 18 000 years’, Nature 373, 52-54.Google Scholar
  23. Le Meur, E. and Huybrechts, P.: 1996, ‘A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle, Annals of Glaciology 23, 309-317.Google Scholar
  24. Letréguilly, A., Huybrechts, P., and Reeh, N.: 1991, ‘Steady-state characteristics of the Greenland ice sheet under different climates’, Journal of Glaciology 37(125), 149-157.Google Scholar
  25. MacAyeal, D.R.: 1992, ‘Irregular oscillations of the West Antarctic ice sheet’, Nature 359, 29-32.Google Scholar
  26. Marsiat, I.: 1994, ‘Simulation of the northern hemisphere continental ice sheets over the last glacial-interglacial cycle: Experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model’, Palaeoclimates 1, 59-98.Google Scholar
  27. Ohmura, A.: 1987, ‘New temperature distribution maps for Greenland’, Zeitschrift fr Gletscherkunde und Glazialgeologie 23, 1-45.Google Scholar
  28. Ohmura, A. and Reeh, N.: 1991, ‘New precipitation and accumulation maps for Greenland’, Journal of Glaciology 37, 140-148.Google Scholar
  29. Ohmura, A., Wild, M., and Bengtsson, L.: 1996, ‘Present and future mass balance of the ice sheets simulated with GCM’, Annals of Glaciology 23, 187-193.Google Scholar
  30. Reeh, N.: 1991, ‘Parameterization of melt rate and surface temperature on the Greenland ice sheet’, Polarforschung 59(3), 113-128.Google Scholar
  31. Ritz, C.: 1997, ‘EISMINT intercomparison experiment. Comparison of existing Greenland models. Unpublished manuscript, Laboratoire de Glaciologie et de G´eophysique de l'Environnement, Saint Martin d'H'eres, France. [Available online from ftp anonymous, directory /pub/EISMINT-INTERCOMP/GREENLAND.]Google Scholar
  32. Schönwiese, C.-D.: 1992, Klima im Wandel. Tatsachen, Irrtümer, Risiken, Deutsche Verlags-Anstalt, Stuttgart, Germany.Google Scholar
  33. Thomas, R.H.: 1979, ‘The dynamics of marine ice sheets. Journal of Glaciology 24(90), 167-177.Google Scholar
  34. Van de Wal, R.S.W. and Oerlemans, J.: 1997, ‘Modelling the short-term response of the Greenland ice sheet to global warming’, Climate Dynamics 13, 733-744.Google Scholar
  35. Wilhelms, F.: 1996, ‘Leitfähigkeits-und Dichtemessung an Eisbohrkernen’, Berichte zur Polarforschung 191, 224 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ralf Greve
    • 1
  1. 1.Institut für Mechanik IIITechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations