Advertisement

Biotechnology Letters

, Volume 22, Issue 3, pp 235–237 | Cite as

Degradation of the methyl substituted alkene, citronellol, by Pseudomonas aeruginosa, wild type and mutant strains

  • Jesús Campos-García
  • Gloria Soberón-Chávez
Article

Abstract

Pseudomonas aeruginosa W51D used citronellol (3,7-dimethyl-6-octen-1-ol) as sole source of carbon and oxidized it to citronellal, citronellic acid and finally to geranic acid. A mutant derived from this strain was isolated as unable to degrade citronellol and had diminished (93%) citronellal dehydrogenase activity.

citronellal citronellic acid citronellol geranic acid Pseudomonas aeruginosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes a NADPH-dependent _-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacteriol. 180: 4442–4451.PubMedGoogle Scholar
  2. Campos-García J, Esteve A, Vázquez-Duhalt R, Ramos JL, Soberón-Chávez G (1999) Branched-chain dodecylbenzenesulfonate degradation pathway of Pseudomonas aeruginosa W51D involves a novel route for degradation of the surfactant lateral alkyl chain. Appl. Environ. Microbiol. 65: 3730–3734.PubMedGoogle Scholar
  3. Campos-García J, Nájera R, Camarena L, Soberón-Chávez G (2000) Cloning and characterization of the Pseudomonas aeruginosa motR gene, involved in regulation of bacterial motility. FEMS Microbiol. Lett. (submitted).Google Scholar
  4. de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5-and Tn10-derived minitransposons. Meth. Enzymol. 235: 386–405.PubMedGoogle Scholar
  5. Ditty JL, Grimm AC, Harwood C (1998)Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol. Lett. 159: 267–273.PubMedGoogle Scholar
  6. Fall RR, Brown JL, Schaeffer TL (1979) Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl. Environ. Microbiol. 38: 715–722.PubMedGoogle Scholar
  7. Pirnik MP (1977) Microbial oxidation of methyl branched alkanes. Crit. Rev. Microbiol. 5: 413–422.PubMedGoogle Scholar
  8. Rontani J-F, Gilewicz MJ, Michotey VD, Zheng TL, Bonin PC, Bertrand J-C (1997) Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl. Environ. Microbiol. 63: 636–643.PubMedGoogle Scholar
  9. Soberón-Chávez G, Haïdour A, Ramos JL, Campos J, Ortigoza J (1996) Selection and preliminary characterization of a Pseudomonas aeruginosa strain mineralizing some isomers in a branched-chain dodecylbenzene sulfonate mixture. World J. Microbiol. Biotechnol. 12: 367–372.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jesús Campos-García
    • 1
    • 1
    • 1
  • Gloria Soberón-Chávez
    • 1
    • 1
    • 1
  1. 1.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMéxico

Personalised recommendations