Biotechnology Letters

, Volume 21, Issue 12, pp 1047–1050 | Cite as

Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans

  • Dong Gun Lee
  • Song Yub Shin
  • Dae-Hee Kim
  • Moo Yeol Seo
  • Joo Hyun Kang
  • Younghoon Lee
  • Kil Lyong Kim
  • Kyung-Soo Hahm
Article

Abstract

The antifungal mechanism of a 20-mer peptide, Ib-AMP1, derived from Impatiens balsamina was investigated. The oxidized (disulfide bridged) Ib-AMP1 showed a 4-fold increase in antifungal activity against Aspergillus flavus and Candida albicans than reduced (non-disulfide bridged) Ib-AMP1. Ib-AMP1 had very low activity for phospholipid disruption when compared with cecropin A(1-8)-magainin 2(1-12), a α-helical amphiphatic, antimicrobial peptide. Confocal microscopy showed that Ib-AMP1 binds on cell surface or penetrates into cell membranes. These results suggested that Ib-AMP1 may manifest its antifungal activity against Candida albicans by inhibiting a distinct cellular process rather than ion channel or pore formation in cell membrane.

antifungal mechanism Candida albicans confocal microscopy Ib-AMP1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzula P (1998) Plant defense peptides. Biopolymers (Peptide Science) 47: 479–491.Google Scholar
  2. Kang JH, Shin SY, Lee MK, Hahm K-S (1998) Release of aqueous contents from phospholipid vesicles induced by cecropin A(1–8)-magainin 2(1–12) hybrid and its analogues. J. Peptide Res. 52: 45–50.Google Scholar
  3. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu L-r (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061: 297–303.Google Scholar
  4. Merrifield RB (1986) Solid phase synthesis. Science 232: 341–347.Google Scholar
  5. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 368: 257–262.Google Scholar
  6. Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37: 983–990.Google Scholar
  7. Shin SY, Watanabe M, Kako K, Ohtaki T, Munekata E (1994) Structure-activity relationships of human epidermal growth factor (h-EGF). Life Sci. 55: 131–139.Google Scholar
  8. Shin SY, Lee MK, Kim KL, Hahm K-S (1997) Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Peptide Res. 50: 279–285.Google Scholar
  9. Shin SY, Kang JH, Hahm K-S (1999) Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Peptide Res. 53: 82–90.Google Scholar
  10. Tailor RH, Acland DP, Attenborough S, Cammue BPA, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 272: 24480–24487.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dong Gun Lee
    • 1
  • Song Yub Shin
    • 1
  • Dae-Hee Kim
    • 2
  • Moo Yeol Seo
    • 1
  • Joo Hyun Kang
    • 1
  • Younghoon Lee
    • 2
  • Kil Lyong Kim
    • 1
  • Kyung-Soo Hahm
    • 1
  1. 1.Peptide Engineering Research UnitKorea Research Institute of Bioscience and BiotechnologyYusong, TaejonKorea
  2. 2.Department of ChemistryKorea Advanced Institute of Science and TechnologyYusong, TaejonKorea

Personalised recommendations