Biotechnology Letters

, Volume 23, Issue 3, pp 169–173 | Cite as

Bacterial epoxide hydrolase-catalyzed resolution of a 2,2-disubstituted oxirane: optimization and upscaling

  • Helena Hellström
  • Andreas Steinreiber
  • Sandra F. Mayer
  • Kurt Faber

Abstract

The epoxide hydrolase-catalyzed resolution of (±)-2-methylglycidyl benzyl ether, a versatile chiral building block for the asymmetric synthesis of bioactive compounds, mediated by whole cells of Rhodococcus ruber SM 1789 was accomplished. Among various parameters (such as temperature, buffer type, pH and catalyst/substrate-ratio) an elevated substrate-concentration proved to be particularly sensitive with respect to a significant enhancement of the enantioselectivity.

bacterial epoxide hydrolase pH-optimization Rhodococcus ruber temperature-optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archelas A, Furstoss R (1999) Biocatalytic approaches for the synthesis of enantiopure epoxides. Top. Curr. Chem. 200: 159-191.Google Scholar
  2. Botes AL, Litthauer D, van Tonder A, van Dyk MS (1999) Physicochemical properties of the epoxide hydrolase from Rhodosporidium toruloides. Biotechnol. Lett. 21: 1137-1144.Google Scholar
  3. Cleij M,Archelas A,Furstoss R (1998) Microbiological transformations 42. A two-liquid phase preparative scale process for an epoxide hydrolase catalysed resolution of para-bromo-α-methyl styrene oxide. Occurrence of a surprising enantioselectivity enhancement. Tetrahedron: Asymmetry 9: 1839-1842.Google Scholar
  4. Cleij M, Archelas A, Furstoss R (1999) Microbiological transformations 43. Epoxide hydrolases as tools for the synthesis of enantiopure α-ethylstyrene oxides: a new and efficient synthesis of (S)-ibuprofen. J. Org. Chem. 64: 5029-5035.Google Scholar
  5. Krenn W,Osprian I,Kroutil W,Braunegg G,Faber K (1999) Bacterial epoxide hydrolases of opposite enantiopreference. Biotechnol. Lett. 21: 687-690.Google Scholar
  6. Kroutil W,Faber K (2000) Stereoselective syntheses using microbial epoxide hydrolases. In: Patel RN, ed. Stereoselective Biocatalysis. New York: Marcel Dekker, pp. 205-237.Google Scholar
  7. Kroutil W,Mischitz M,Faber K (1997) Deracemisation of (±)-2,3-disubstituted oxiranes via biocatalytic hydrolysis using bacterial epoxide hydrolases: kinetics of an enantioconvergent process. J. Chem. Soc. Perkin Trans. 1, 3629-3636.Google Scholar
  8. Mischitz M (1996) The enantioselective epoxide hydrolase system of Rhodococcus sp. NCIMB 11216. PhD Thesis, Graz University of Technology.Google Scholar
  9. Moussou P,Archelas A,Furstoss R (1998) Microbiological transformations 41. screening for novel fungal epoxide hydrolases. J. Mol. Catal. B5: 447-458.Google Scholar
  10. Orru RVA,Faber K (1999) Stereoselectivities of microbial epoxide hydrolases. Curr. Opinion Chem. Biol. 3: 16-21.Google Scholar
  11. Orru RVA,Mayer SF,Kroutil W,Faber K (1998) Chemoenzymatic deracemisation of (±)-2,2-disubstituted oxiranes. Tetrahedron 54: 859-874.Google Scholar
  12. Pedragosa-Moreau S,Morisseau C,Baratti J,Zylber J,Archelas A,Furstoss R (1997) Microbiological transformations 37. An enantioconvergent synthesis of the β-blocker R-nifenalol using a combined chemoenzymatic approach. Tetrahedron 53: 9707-9714.Google Scholar
  13. Rakels JLL,Straathof AJJ,Heijnen JJ (1993) A simple method to determine the enantiomeric ratio in enantioselective biocatalysis. Enzyme Microbiol. Technol. 15: 1051-1056.Google Scholar
  14. Steinreiber A,Osprian I,Mayer SF,Orru RVA,Faber K (2000a) Enantioselective hydrolysis of functionalized 2,2-disubstituted oxiranes with bacterial epoxide hydrolases. Eur. J. Org. Chem., in press.Google Scholar
  15. Steinreiber A, Strauss U, Mayer SF, Uray G (2000b) Simultaneous direct HPLC enantioseparation of 2-methylglycerol-1-benzylether and its epoxide using a solvent-switch technique. J. Chromatogr., in press.Google Scholar
  16. Weijers CAGM,Botes AL,van Dyk MS,de Bont JAM (1998) Enantioselective hydrolysis of unbranched aliphatic 1,2-epoxides by Rhodotorula glutinis. Tetrahedron: Asymmetry 9: 467-473.Google Scholar
  17. Zhang J,Reddy J,Roberge C,Senanayake C,Greasham R,Chartrain M (1995) Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. J. Ferment. Bioeng. 80: 244-246.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Helena Hellström
    • 1
  • Andreas Steinreiber
    • 1
  • Sandra F. Mayer
    • 1
  • Kurt Faber
    • 1
    • 1
  1. 1.Department of Chemistry, Organic & Bio-organic ChemistryUniversity of GrazGrazAustria

Personalised recommendations