Erkenntnis

, Volume 54, Issue 2, pp 173–194

Platonistic Formalism

  • L. Horsten
Article

Abstract

The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Benacerraf, P.: 1965, ‘What Numbers Could Not Be’ Philosophical Review 74.Google Scholar
  2. Benacerraf, P.: 1973, ‘Mathematical Truth’ Journal of Philosophy 70.Google Scholar
  3. Boolos, G.: 1975, ‘On Second-Order Logic’ Journal of Philosophy 72.Google Scholar
  4. Boolos, G.: 1995, ‘The Standard ofEquality of Numbers’ inW. Demopoulos (ed.) Frege's Philosophy of Mathematics, Harvard University Press, Cambridge, MA.Google Scholar
  5. Burge, T.: 1993, ‘Content Preservation’ Philosophical Review 102.Google Scholar
  6. Burge, T.: 1998, ‘Computer Proof, A Priori Knowledge, and Other Minds’ Philosophical Perspectives 12.Google Scholar
  7. Feferman, S.: 1962, ‘Transfinite Recursive Progressions of Axiomatic Theories’ Journal ofSymbolic Logic 27.Google Scholar
  8. Field, H.: 1998, ‘Do We Have a Determinate Conception of Finiteness and NaturalNumber’ in M. Schirn (ed.), The Philosophy of Mathematics Today, Oxford University Press.Google Scholar
  9. Friedman, H.: 1971, ‘Higher Set Theory and Mathematical Practice’ Annals of Mathematical Logic 2.Google Scholar
  10. Friedman, H.: 1981, ‘On the Necessary Use of Abstract Set Theory’ Advances in Mathematics 41.Google Scholar
  11. Gödel, K.: 1990, ‘Remarks before the Princeton Bicentennial Conference on Problems inMathematics [1946]’ in S. Feferman et al. (eds), K. Gödel Collected Works, Vol. 2, Oxford University Press.Google Scholar
  12. Gödel, K.: 1995, ‘Some Basic Theorems on the Foundations of Mathematics and Their Implications[1951]’ in S. Feferman et al. (eds), K. Gödel Collected Works, Vol. 3, Oxford University Press.Google Scholar
  13. Halbach, V.: 1996, Axiomatische Wahrheitstheorien, Akademie Verlag.Google Scholar
  14. Howard, W.: 1996, ‘Some Proof Theory in the 1960s’ in P. Odifreddi (ed.), Kreiseliana. About and Around Georg Kreisel, A. K. Peters.Google Scholar
  15. Interview with A.M. Gleason: 1990, in D. J. Albers et al. (eds), MoreMathematical People. Contemporary Conversations, Harcourt Brace Jovanovich, New York.Google Scholar
  16. Isaacson, D.:1996, ‘Arithmetical Truth and Hidden Higher-Order Concepts [1987]’ reprinted in W. D. Hart (ed.), The Philosophy of Mathematics, Oxford University Press.Google Scholar
  17. Isaacson, D.: 1992, ‘Some Considerations onArithmetical Truth and the ω-Rule’ in M. Detlefsen (ed.), Proof, Logic and Formalization, Routledge, London.Google Scholar
  18. Isaacson, D.: 1994, ‘Mathematical Intuition and Objectivity’ in A. George(ed.), Mathematics and Mind, Oxford University Press.Google Scholar
  19. Jensen, R.: 1995, ‘Inner Models and LargeCardinals’, Bulletin of Symbolic Logic 1.Google Scholar
  20. Kleene, S.: 1967 [1952], Introduction toMetamathematics, 5th edn., North-Holland, Amsterdam.Google Scholar
  21. Kripke, S.: 1975, ‘Outline of a Theoryof Truth’ Journal of Philosophy 72.Google Scholar
  22. Kunen, K.: 1980, Set Theory. An introduction to IndependenceProofs, North-Holland, Amsterdam.Google Scholar
  23. Lavine, Sh.: 1994, Understanding the Infinite, Harvard University Press, Cambridge, MA.Google Scholar
  24. Maddy, P.: 1997, Naturalism in Mathematics, Clarendon Press, Oxford.Google Scholar
  25. Manders, K.: 1989, ‘Domain Extension and the Philosophy of Mathematics’ Journal ofPhilosophy 86.Google Scholar
  26. Mendelson, E.: 1990, ‘Second Thoughts about Church's Thesis and MathematicalProofs’ Journal of Philosophy 87.Google Scholar
  27. Myhill, J.: 1962, ‘Some Remarks on the Notion of Proof’, Journal of Philosophy 57.Google Scholar
  28. Shelah, S.: 1984, ‘Can You Take Solovay's Inaccessible Away?’Israel Journal of Mathematics 48.Google Scholar
  29. Shelah, S.: 1993, ‘The Future of Set Theory’ in H. Judah(ed.), Set Theory of the Reals, Israel Mathematical Conference Proceedings, Vol. 6.Google Scholar
  30. Shelah, S.:1994, Cardinal Arithmetic, Oxford University Press.Google Scholar
  31. Sieg, W.: 1990, ‘Relative Consistency Proofsand Mathematical Practice’ Synthese 84.Google Scholar
  32. Sieg W.: 1994, ‘Mechanical Procedures andMathematical Experience’, in A. George (ed.), Mathematics and Mind, Oxford University Press.Google Scholar
  33. Soare, R.:1996, ‘Computability and Recursion’ Bulletin of Symbolic Logic 3.Google Scholar
  34. Solovay, R.: 1970, ‘AModel of ZFC in which all Sets of Reals are Lebesgue-measurable’ Annals of Mathematics 92.Google Scholar
  35. Steiner, M.: 1975, Mathematical Knowledge, Cornell University Press, New York.Google Scholar
  36. Tarski, A.:1983, ‘The Concept of Truth in Formalized Languages [1935]’ in J. Corcoran (ed.), Logic, Semantics, Metamathematics, 2nd edn., Hackett.Google Scholar
  37. Turing, A.: 1936, ‘On Computable Numbers, with anApplication to the Entscheidungsproblem’ Proceedings of the London Mathematical Society Ser. 2 42.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • L. Horsten
    • 1
  1. 1.Center for Logic, Philosophy of Science & Philosophy of LanguageUniversity of LeuvenLeuvenBelgium

Personalised recommendations