Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 5, pp 493–500

Stoichiometry of Energy Coupling by Proton-Translocating ATPases: A History of Variability

  • John J. Tomashek
  • William S. A. Brusilow
Article
  • 174 Downloads

Abstract

One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic phosphate. The stoichiometry of these processes (H+/ATP, or coupling ratio) has been studied in many systems for many years, with no universally agreed upon solution. Recent discoveries concerning the structure of the ATPases, their assembly and the stoichiometry of their numerous subunits, particularly the proton-carrying proteolipid (subunit c) of the FO and V0 sectors, have shed new light on this question and raise the possibility of variable coupling ratios modulated by variable proteolipid stoichiometries.

V, F, A-ATPase proton/ATP ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621-8.Google Scholar
  2. Alexandre, A., Reynafarje, B., and Lehninger, A. L. (1978). Proc. Natl. Acad. Sci. USA 75, 5296-5300.Google Scholar
  3. Arai, H., Terres, G., Pink, S., and Forgac, M. (1988). J. Biol. Chem. 263, 8796-8802.Google Scholar
  4. Azzone, G. F., Pozzan, T., Massari, S., and Bragadin, M. (1978a). Biochim. Biophys. Acta 501, 296-306.Google Scholar
  5. Azzone, G. F., Pozzan, T., and Massari, S. (1978b). Biochim. Biophys. Acta 501, 307-316.Google Scholar
  6. Azzone, G. F., Pozzan, T., Viola, E., and Arslan, P. (1978c). Biochim. Biophys. Acta 501, 317-329.Google Scholar
  7. Baccarini-Melandri, A., Casadio, R., and Melandri, B. A. (1977). Eur. J. Biochem. 78, 389-402.Google Scholar
  8. Bennett, A. B., and Spanswick, R. M. (1984). Plant Physiol. 74, 545-548.Google Scholar
  9. Berry, E. A., and Hinkle, P. C. (1983). J. Biol. Chem. 258, 1474-1468.Google Scholar
  10. Booth, I. R. (1985). Microbiol. Rev. 49, 359-378.Google Scholar
  11. Boyer, P. D. (1989). Faseb J. 3, 2164-2178.Google Scholar
  12. Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717-749.Google Scholar
  13. Brand, M. D. (1977). Biochem. Soc. Trans. 5, 1615-1620.Google Scholar
  14. Brusilow, W. S. A. (1987). J. Bacteriol. 169, 4984-4990.Google Scholar
  15. Capaldi, R. A., Aggeler, R., Turina, P., and Wilkens, S. (1994). TIBS 19, 284-289.Google Scholar
  16. Clark, A. J., Cotton, N. P. J., and Jackson, J. M. (1983). Biochim. Biophys. Acta 723, 440-453.Google Scholar
  17. Cross, R. L., and Taiz, L. (1990). FEBS Lett. 259, 227-229.Google Scholar
  18. Davenport, J. W., and McCarty, R. E. (1981). J. Biol. Chem. 256, 8947-8954.Google Scholar
  19. Davenport, J. W., and McCarty, R. E. (1984). Biochim. Biophys. Acta 851, 136-145.Google Scholar
  20. Davies, J. M., Hunt, I., and Sanders, D. (1994). Proc. Natl. Acad. Sci. USA 91, 8547-8551.Google Scholar
  21. Davies, J. M., Sanders, J., and Gradmann, D. (1996). J. Membr. Biol. 150, 231-241.Google Scholar
  22. Deckers-Hebestreit, G., and Altendorf, K. (1996). Annu. Rev. Microbiol. 50, 791-824.Google Scholar
  23. Dewey, T. G., and Hammes, G. G. (1981). J. Biol. Chem. 256, 8941-8946.Google Scholar
  24. Ferguson, S. J., and Sorgato, M. C. (1982). Annu. Rev. Biochem. 51, 185-217.Google Scholar
  25. Forgac, M. (1999). J. Bioenerg. Biomembr. 31, 57-66.Google Scholar
  26. Foster, D. L., and Fillingame, R. H. (1979). J. Biol. Chem. 254, 8230-8236.Google Scholar
  27. Foster, D. L., and Fillingame, R. H. (1982). J. Biol. Chem. 257, 2009-2015.Google Scholar
  28. Gogarten, J. P., Starke, T., Kibak, H., Fishman, J., and Taiz, L. (1992). J. Exp. Biol. 172, 137-147.Google Scholar
  29. Grabe, M., Wang, H., and Oster, G. (2000). Biophys. J. 78, 2798-2813.Google Scholar
  30. Gräber, P., and Witt, H. T. (1976). Biochim. Biophys. Acta 423, 141-163.Google Scholar
  31. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997). J. Biol.Chem. 272, 4795-4803.Google Scholar
  32. Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000). J. Biol. Chem. 275, 386-389.Google Scholar
  33. Holian, A., and Wilson, D. F. (1980). Biochemistry 19, 4213-4221.Google Scholar
  34. Izawa, S. (1970). Biochim. Biophys. Acta 223, 165-173.Google Scholar
  35. Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986). Arch. Biochem. Biophys. 248, 79-83.Google Scholar
  36. Jensen, P. R., Michelsen, O., and Westerhoff, H. V. (1995). J. Bioenerg. Biomembr. 27, 543-554.Google Scholar
  37. Johnson, R. G., Beers, M. F., and Scarpa, A. (1982). J. Biol. Chem. 257, 10701-10707.Google Scholar
  38. Jones, P. C., and Fillingame, R. H. (1998). J. Biol. Chem. 273, 29701-29705.Google Scholar
  39. Kakinuma, Y., Yamato, I., and Murata, T. (1999). J. Bioenerg. Biomembr. 31, 7-14.Google Scholar
  40. Kane, P. M. (1999). J. Bioenerg. Biomembr. 31, 3-6.Google Scholar
  41. Kashket, E. R. (1982). Biochemistry 21, 5534-5538.Google Scholar
  42. Kashket, E. R. (1983). FEBS Lett. 154, 343-346.Google Scholar
  43. Kashket, E. R. (1985). Annu. Rev. Micro. 39, 219-242.Google Scholar
  44. Kasho, V. N., and Boyer, P. D. (1989). Proc. Natl. Acad. Sci. USA 86, 8708-8711.Google Scholar
  45. Ketcham, S. R., Davenport, J. W., Warncke, K., and McCarty, R. E. (1984). J. Biol. Chem. 259, 7286-7293.Google Scholar
  46. Krenn, B. E., van Walraven, H. S., Scholts, M. J. C., and Kraayenhof, R. (1993). Biochem. J. 294, 705-709.Google Scholar
  47. Lüger, P. (1991). Electrogenic Ion Pumps, Sinauer Associates: Sunderland, MA, U.S.A.Google Scholar
  48. Lemaire, C., Girault, G., and Galmiche, J. M. (1985). Biochim. Biophys. Acta 807, 285-292.Google Scholar
  49. Lemasters, J. J. (1984). J. Biol. Chem. 259, 13123-13130.Google Scholar
  50. Low, R., Rockel, B., Kirsch, M., Ratajczak, R., Hortensteiner, S., Martinoia E., Luttge, U., and Rausch, T. (1996). Plant Physiol. 110, 259-265.Google Scholar
  51. Luvisetto, S., Pietrobon, D., and Azzone, G. F. (1987). Biochemistry 26, 7332-7338.Google Scholar
  52. Maloney, P. C., and Hansen, F. C. 3rd. (1982). J. Membr. Biol. 66, 63-75.Google Scholar
  53. Maloney, P. C. (1983). J. Bacteriol. 153, 1461-1470.Google Scholar
  54. McCarty, R. E., and Portis, A. R. Jr. (1976). Biochemistry 15, 5110-5114.Google Scholar
  55. Mitchell, P. (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin.Google Scholar
  56. Mitchell, P., and Moyle, J. (1969). Eur. J. Biochem. 7, 471-484.Google Scholar
  57. Moriyama Y., and Nelson, N. (1988). The Ion Pumps: Structure, Function, and Regulation, pp. 387-394.Google Scholar
  58. Moyle, J., and Mitchell, P. (1973). FEBS Lett. 30, 317-320.Google Scholar
  59. Müller, V., Ruppert, C., and Lemker, T. (1999). J. Bioenerg. Biomembr. 31, 15-28.Google Scholar
  60. Müller, D. J., Stahlberg, H., Engel, A., Seelert, H., and Dencher, N. (2000). Biophys. J. 78, 280A.Google Scholar
  61. Nalin, C. M., and McCarty, R. E. (1984). J. Biol. Chem. 259, 7275-7280.Google Scholar
  62. Nelson, H., and Nelson, N. (1989). FEBS Lett. 247, 147-153.Google Scholar
  63. Nelson, N. (1992). Biochim. Biophys. Acta 1100, 109-124.Google Scholar
  64. Nicholls, D. G., and Bernson, V. S. M. (1977). Eur. J. Biochem. 75, 601-612.Google Scholar
  65. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr. (1997). Nature (London) 386, 299-302.Google Scholar
  66. Ogawa, S., and Lee, T. M. (1984). J. Biol. Chem. 259, 10004-10011.Google Scholar
  67. Oster, G., Wang H., and Grabe, M. (2000). Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 523-528.Google Scholar
  68. Patlak, C. S. (1957). Bull. Math. Biophys. 19, 209-235.Google Scholar
  69. Pedersen, P. L., and Amzel, L. M. (1993). J. Biol. Chem. 268, 9937-9940.Google Scholar
  70. Pedersen, P. L., Schwerzmann, K, and Cintron, N. (1981). Curr. Top. Bioenerg. 11, 149-199.Google Scholar
  71. Perlin, D. S., San Fransisco, M. J. D., Slayman, C. W., and Rosen, B. P. (1986). Arch. Biochem. Biophys. 248, 53-61.Google Scholar
  72. Petty, K. M., and Jackson, J. B. (1979a). Biochim. Biophys. Acta 547, 463-473.Google Scholar
  73. Petty, K. M., and Jackson, J. B. (1979b). Biochim. Biophys. Acta 547, 474-483.Google Scholar
  74. Pietrobon, D., and Caplan, S. R. (1985). Biochemistry 24, 5764-5776.Google Scholar
  75. Pietrobon, D., Zoratti, M., and Azzone, G. F. (1983). Biochim. Biophys. Acta 723, 317-321.Google Scholar
  76. Pietrobon, D., Zoratti, M., Azzone, G. F., and Caplan, S. R. (1986). Biochemistry 25, 767-775.Google Scholar
  77. Pietrobon, D., Luvisetto, S., and Azzone, G. F. (1987). Biochemistry 26, 7339-7347.Google Scholar
  78. Pitard, B., Richard, P., Dunach, M., Rigaud, J. L. (1996). Eur. J. Biochem. 235, 779-788.Google Scholar
  79. Portis, A. R., Jr., and McCarty, R. E. (1974). J. Biol. Chem. 249, 6250-6254.Google Scholar
  80. Portis, A. R., Jr., and McCarty, R. E. (1976). J. Biol. Chem. 251, 1610-1617.Google Scholar
  81. Possmayer, F. E., and Gräber, P. (1994). J. Biol. Chem. 269, 1896-1904.Google Scholar
  82. Pullman, M. E., and Monroy, G. C. (1963). J. Biol. Chem. 238, 3762-3769.Google Scholar
  83. Rahlfs, S., Aufurth, S., and Müller, V. (1999). J. Biol. Chem. 274, 33999-34004.Google Scholar
  84. Rastogi, V. K., and Girvin, M. E. (1999). Nature (London) 402, 263-268.Google Scholar
  85. Rottenberg, H., and Gutman, M. (1977). Biochemistry 16, 3220-3227.Google Scholar
  86. Ruppert, C., Kavermann, H., Wimmers, S., Schmid, R., Kellermann, J., Lottspeich, F., Huber, H., Stetter, K. O., and Müller, V. (1999). J. Biol. Chem. 274, 25281-25284.Google Scholar
  87. Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999). Science 286, 1722-1724.Google Scholar
  88. Schaefer, E. M., Hartz, D., Gold, L., and Simoni, R. D. (1989). J. Bacteriol. 171, 3901-3908.Google Scholar
  89. Schemidt, R. A., Hsu, D. K. W., Deckers-Hebestreit, G., Altendorf, K., and Brusilow, W. S. A. (1995). Arch. Biochem. Biophys. 323, 423-428.Google Scholar
  90. Schemidt, R. A., Qu, J., Williams, J. R., and Brusilow, W. S. A. (1998). J. Bacteriol. 180, 3205-3208.Google Scholar
  91. Schmidt, A. L., and Briskin, D. P. (1993a). Arch. Biochem. Biophys. 301, 165-173.Google Scholar
  92. Schmidt, A. L., and Briskin, D. P. (1993b). Arch. Biochem. Biophys. 306, 407-414.Google Scholar
  93. Scholes, T. A., and Hinkle, P. C. (1984). Biochemistry 23, 3341-3345.Google Scholar
  94. Senior, A. E. (1988). Physiol. Rev. 68, 177-231.Google Scholar
  95. Solomon, K. A., and Brusilow, W. S. A. (1988). J. Biol. Chem. 263, 5402-5407.Google Scholar
  96. Sorgato, M. C., Galiazzo, F., Panato, L., and Ferguson, S. J. (1982). Biochim. Biophys. Acta 682, 184-188.Google Scholar
  97. Stevens, T. H., and Forgac, M. (1997). Annu. Rev. Cell Develop. Biol. 13, 779-808.Google Scholar
  98. Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700-1704.Google Scholar
  99. Thayer, W. S., and Hinkle, P. C. (1973). J. Biol. Chem. 248, 5395-5402.Google Scholar
  100. Tomashek, J. J. (1997). Dissertation. University of California, Davis.Google Scholar
  101. Van Dam, K., Westerhoff, H. V., Krab, K., Van der Meer, R., and Arents, J. C. (1980). Biochim. Biophys. Acta 591, 240-250.Google Scholar
  102. Van der Bend, R. L., Cornelissen, J. B. W. J., Berden, J. A., and Van Dam, K. (1984). Biochim. Biophys. Acta 767, 87-101.Google Scholar
  103. van Walraven, H. S., Haak, N. P., Krab, K., and Kraayenhof, R. (1986). FEBS Lett. 208, 138-142.Google Scholar
  104. van Walraven, H. S., Strotmann, H., Schwarz, O., and Rumberg, B. (1996). FEBS Lett. 379, 309-313.Google Scholar
  105. Vik, S. B., and Antonio, B. J. (1994). J. Biol. Chem. 269, 30364-30369.Google Scholar
  106. Vink, R., Bendall, M. R., Simpson, S. J., and Rogers, P. J. (1984). Biochemistry 23, 3667-3675.Google Scholar
  107. Westerhoff, H. V., Colen, A. M., and Van Dam, K. (1983a). Biochem. Soc. Trans. 11, 81-85.Google Scholar
  108. Westerhoff, H. V., Hellingwerf, K. J., and Van Dam, K. (1983b) 80, 305-309.Google Scholar
  109. Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984a). FEBS Lett. 165, 1-5.Google Scholar
  110. Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984b). Biochem. Biophys. Acta 768, 257-292.Google Scholar
  111. Yokoyama, K., Ohkuma, S., Taguchi, H., Yasunaga, T., Wakabayashi, T., and Yoshida, M. (2000). J. Biol. Chem. 275, 13955-13961.Google Scholar
  112. Zoratti, M., Favaron, M., Pietrobon, D., and Azzone, G. F. (1986). Biochemistry 25, 760-767.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • John J. Tomashek
    • 1
  • William S. A. Brusilow
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyWayne State University School of MedicineDetroit
  2. 2.Department of Biochemistry and Molecular BiologyWayne State University School of MedicineDetroit

Personalised recommendations