Advertisement

Climatic Change

, Volume 46, Issue 3, pp 257–276 | Cite as

Precipitation: A Parameter Changing Climate and Modified by Climate Change

  • U. Cubasch
  • R. Voss
  • U. Mikolajewicz
Article

Abstract

This paper discusses two aspects of climate modeling, the deep water formation in the North Atlantic and precipitation changes due to climate change caused by anthropogenic emissions of greenhouse gases. The deep water formation is strongly influenced by the precipitation, and the precipitation is affected by the concentration of the greenhouse gases in the atmosphere and by the atmospheric and oceanic circulation. The experiments discussed here have been performed independently to test the stability of the thermohaline circulation of the North Atlantic and to investigate changes in precipitation due to anthropogenic greenhouse gas emissions. The precipitation changes in a climate change environment are sufficient in some simulations to decrease the thermohaline circulation noticeably. However, it appears that the amount of freshwater needed to bring the circulation to a collapse is magnitudes larger than the anticipated change in precipitation due to anthropogenic activities within the next 100 years. The precipitation changes, on the other hand, might change regionally quite drastically towards more extreme situations, thereby putting additional stress on vegetation and enhancing soil erosion.

Keywords

Precipitation Atmosphere Climate Change Change Environment Soil Erosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broecker, W. S., D. M. Peteet, and D. Rind: 1985, ‘Does the ocean-atmosphere system have more than one stable mode of operation?’ Nature 315, 21-26.Google Scholar
  2. Bryan, F.: 1986, ‘High latitude salinity effects and interhemispheric thermohaline circulations’. Nature 323, 301-304.Google Scholar
  3. Cubasch, U.: 1998, ‘Modellierung regionaler Klimaveränderungen’, In J. L. Lozan, H. Graßl, P. Hupfer (eds.), Warnsignal Klima, Verlag Wissenschaftliche Auswertungen, Hamburg.Google Scholar
  4. Cubasch, U., K. Hasselmann, H. Höck, E. Maier-Reimer, U. Mikolajewicz, B. D. Santer, and R. Sausen:1992, ‘Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model’, Climate Dynamics 8, 55-69.Google Scholar
  5. Cubasch, U., B. D. Santer, A. Hellbach, G. Hegerl, H. Höck, E. Maier-Reimer, U. Mikolajewicz, A. Stössel and R. Voss: 1994, ‘Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model’, Climate Dynamics 10, 1-19.Google Scholar
  6. Cubasch, U., J. Waszkewitz, G. C. Hegerl and J. Perlwitz, 1995: Regional climate changes as simulated in time-slice experiments. Climatic Change 31, 273-304.Google Scholar
  7. Cubasch, U., H. von Storch, J. Waszkewitz and E. Zorita: 1996a, ‘Estimates of climate change in Southern Europe using different downscaling techniques’, Climate Research, 7, 129-149.Google Scholar
  8. Cubasch, U., G. C. Hegerl and J. Waszkewitz, 1996b, ‘Prediction, Detection and Regional Assessment of Anthropogenic Climate Change’, Geophysica, 32, 77-96.Google Scholar
  9. Dickson, R., J. Lazier, J. Meincke, P. Rhines and J. Swift: 1996, ‘Long-term coordinated changes in the convective activity of the North Atlantic’, Progress in Oceanography 38, 241-295.Google Scholar
  10. Gleckler, P. J., D. A. Randall, G. Boer, R. Colmann, M. Dix, V. Galin, M. Helfand, J. Kiehl, A. Kitoh, W. Lau, X.Z. Liang, V. Lykossov, B. McAvaney, K. Miyakoda, S. Planton: 1994, ‘Cloudradiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models’, PCMDI Report No. 15, PCMDI/LLNL, Livermore, CA, USA.Google Scholar
  11. Hughes, T. M. C. and A. J. Weaver: 1994, ‘Multiple equilibria of an asymmetric two-basin ocean model’, Journal of Physical Oceanography 24, 619-634.Google Scholar
  12. IPCC (Intergovernmental Panel on Climate Change): 1990, Climate change: The IPCC Scientific Assessment, J.T. Houghton, G.J. Jenkins, and J.J. Ephraums (eds.) Cambridge University Press, Cambridge.Google Scholar
  13. IPCC (Intergovernmental Panel on Climate Change): 1992, Climate change: The supplementary report to the IPCC scientific assessment, J. Houghton, B. A. Callendar and S. K. Varney (eds.), Cambridge University Press, Cambridge.Google Scholar
  14. IPCC (Intergovernmental Panel on Climate Change): 1996, Climate change 1995-The science of climate change, J. Houghton, L. Meira Filho, B. A. Callendar, N. Harris, A. Kattenberg and K. Maskell (eds.), Cambridge University Press, Cambridge.Google Scholar
  15. Lal, M., L. Bengtsson, U. Cubasch, M. Esch and U. Schlese: 1995a, ‘Synoptic scale disturbances of Indian summer monsoon as simulated in a high resolution climate model’, Climate Research 5, 243-258.Google Scholar
  16. Lal, M., U. Cubasch, R. Voss and J. Waszkewitz: 1995b, ‘Effect of transient increase of greenhouse gases and sulphate aerosols on Monsoon climate’, Current Science 69, 752-762.Google Scholar
  17. Latif, M., Roeckner, E., Mikolajewicz, U. and Voss, R.: 2000, ‘Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation’, Journal of Climate, forthcoming.Google Scholar
  18. Legates, D. R., and C. J. Willmott: 1990, ‘Mean seasonal and spatial variability in gauge corrected global precipitation’, Journal of Climatology 10, 111-127.Google Scholar
  19. Maier-Reimer, E. and U. Mikolajewicz: 1989, ‘Experiments with an OGCM on the cause of the Younger Dryas’, In Ayala-Castanares A, Wooster W, and Yanez-Arancibia A (eds.) Oceanography 1988, UNAM Press, Mexiko, pp 87-99.Google Scholar
  20. Maier-Reimer, E., U. Mikolajewicz, K. Hasselmann: 1993, ‘Mean circulation of the LSG OGCM and its sensitivity to the thermohaline surface forcing’, Journal of Physical Oceanography 23, 731-757.Google Scholar
  21. Manabe, S. and R. J. Stouffer: 1988, ‘Two stable equilibria of a coupled ocean-atmosphere model’, Journal of Climate 1, 841-866.Google Scholar
  22. Manabe, S. and R. J. Stouffer: 1993, ‘Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system’, Nature 364, 215-218.Google Scholar
  23. Manabe, S. and R. J. Stouffer: 1994, ‘Multiple-Century response of a coupled ocean-atmosphere model to an increase of the atmospheric carbon dioxide’, Journal of Climate 7, 5-23.Google Scholar
  24. Manabe, S. and R. J. Stouffer: 1995, ‘Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean’, Nature 378, 165-167.Google Scholar
  25. Manabe, S. and R. J. Stouffer: 1997, ‘Coupled ocean-atmosphere model response to freshwater input: comparison with the Younger Dryas event’, Paleoceanography 12, 321-336.Google Scholar
  26. Manabe, S., K. Bryan and M. J. Spelman: 1990, ‘Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide’, Journal of Physical Oceanography 20, 722-749Google Scholar
  27. Marotzke, J. and J. Willebrand: 1991, ‘Multiple equilibria of the global thermohaline circulation’, Journal of Physical Oceanography 21, 1372-1385.Google Scholar
  28. Mayewski, P. A., L. D. Meeker, S. Whitlow, M. S. Twickler, M. C. Morrison, R. B. Alley, P. Bloomfield and K. Taylor: 1993, ‘The atmosphere during the Younger Dryas’, Science 261, 195-197.Google Scholar
  29. Mikolajewicz, U. and E. Maier-Reimer: 1994, ‘Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor-belt’, Journal of Geophysical Research 99, 22633-22644.Google Scholar
  30. Mikolajewicz U., E. Maier-Reimer, T. J. Crowley and K-Y Kim: 1993, ‘Effect of Drake and Panamanian gateways on the circulation of an ocean model’, Paleoceanography 8, 409-426.Google Scholar
  31. Mikolajewicz, U., T. J. Crowley, A. Schiller and R. Voss: 1997, ‘North Pacific climate changes due to a collapsed Atlantic conveyor circulation’, Nature 367, 384-387.Google Scholar
  32. Nakamura, M., P.H. Stone and J.Marotzke, 1994: ‘Destabilization of the thermohaline circulation by atmospheric eddy transports’, Journal of Climate 7, 1870-1882.Google Scholar
  33. Rahmstorf, S.: 1997, ‘Ice-cold in Paris’, New Scientist 2068, 26-30.Google Scholar
  34. Rahmstorf, S. and J. Willebrand: 1995, ‘The role of temperature feedback in stabilising the thermohaline circulation’, Journal of Physical Oceanography 25, 787-805.Google Scholar
  35. Roeckner, E., K. Arpe, L. Bengtsson, S Brinkop, L. Dümenil, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schlese, S. Schubert, and M. Windelband: 1992, ‘Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution’, MPI Report No. 93, Max-Planck-Institut für Meteorologie, Hamburg, Germany.Google Scholar
  36. Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe: 1998, ‘Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle’, MPI Report No. 266, Max-Planck-Institut für Meteorologie, Hamburg, Germany.Google Scholar
  37. Rooth, C.: 1982, ‘Hydrology and ocean circulation’, Progress in Oceanography 11, 131-149.Google Scholar
  38. Stommel, H. H.: 1961, ‘Thermohaline convection with two stable regimes of flow’, Tellus 13, 224-230.Google Scholar
  39. Tziperman, E. 1997, ‘Inherently unstable climate behaviour due to weak thermohaline ocean circulation’, Nature 396, 592-595.Google Scholar
  40. Voss, R., and R. Sausen: 1996, ‘Techniques for asynchronous and periodically synchronous coupling of atmosphere and ocean models Part II: impact of variability’, Climate Dynamics 12, 605-614.Google Scholar
  41. Voss, R., R. Sausen and U. Cubasch: 1997, ‘Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG’, Climate Dynamics 14, 249-266.Google Scholar
  42. Zhang, S., R. J. Greatbatch and C. A. Lin: 1993, ‘A re-examination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modelling’, Journal of Physical Oceanography 23, 287-299.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • U. Cubasch
    • 1
  • R. Voss
    • 1
  • U. Mikolajewicz
    • 1
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany

Personalised recommendations