Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 3, pp 269–275 | Cite as

NM23/Nucleoside Diphosphate Kinase and Signal Transduction

  • Angela de S. Otero


NM23s (or NDP kinases) regulate a fascinating variety of cellular activities, includingproliferation, development, and differentiation. All these processes are modulated by external stimuli,leading to the idea that this family of proteins modulates transmembrane signaling pathways.This review summarizes the evidence indicating that NM23/NDP kinases participate intransmembrane signaling in eukaryotic cells and discusses the molecular mechanisms proposed toaccount for these actions.

Nucleoside diphosphate kinase nm23 signal transduction cytoskeleton receptors GTP binding proteins phosphorylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthel, T. K., and Walker, G. C. (1999). J. Biol. Chem. 274, 36670-36678.Google Scholar
  2. Berman, D. M. and Gilman, A.G. (1998). J. Biol. Chem. 275, 1269-1272.Google Scholar
  3. Biggs, J., Hersperger, E., Steeg, P. S., Liotta, L. A., and Shearn, A. (1990). Cell 63, 933-940.Google Scholar
  4. Chang, C. L., Strahler, J. R., Thoraval, D. H., Qian, M. G., Hinderer, R., and Hanash, S. M. (1996). Oncogene 12, 659-667.Google Scholar
  5. Choi, G., Yi, H., Lee, J., Kwon, Y. K, Soh, M. S., Shin, B., Luka, Z., Hahn, T. R., and Song, P. S. (1999). Nature (London) 401, 610-613.Google Scholar
  6. Dumas, C., Lascu, I., Morera, S., Glaser, P., Fourme, R., Wallet, V., Lacombe, M. L., Veron, M., and Janin, J. (1992). EMBO J. 11, 3203-3208.Google Scholar
  7. Eckes, B., Dogic, D., Colucci-Guyon, E., Wang, N., Maniotis, A., Ingber, D., Merckling, A., Langa, E, Aumailley, M., Delouvee, A., Koteliansky, V., Babinet, C., and Krieg, T. (1998). J. Cell Sci. 111, 1897-1907.Google Scholar
  8. Engel, M., Veron, M., Theisinger, B., Lacombe, M. L., Seib, T., Dooley, S., and Welter, C. (1995). Eur. J. Biochem. 234, 200-207.Google Scholar
  9. Freije, J. M., Blay, P., MacDonald, N. J., Manrow, R. E., and Steeg, P. S. (1997). J. Biol. Chem. 272, 5525-5532.Google Scholar
  10. Gervasi, E., D'Agnano, I., Vossio, S., Zupi, G., Sacchi, A., and Lombardi, D. (1996). Cell Growth Different. 7, 1689-1695.Google Scholar
  11. Gilles, C., Polette, M., Zahm J., Tournier, J., Voiders, L., Foidart, J., and Birembaut, P. (1999). J. Cell Sci. 112, 4615-4625.Google Scholar
  12. Hamby, C. V., Mendola, C. E., Potla, L., Stafford, G., and Backer, J. M. (1995). J. Cell Sci. Biochem. Biophys. Res. Commun. 211, 579-585.Google Scholar
  13. Harvey, G., and Pearson, C. K. (1988). J. Cell Physiol. 134, 25-36.Google Scholar
  14. Hemmerich, S., and Pecht, I. (1992). Biochemistry 31, 4580-4587.Google Scholar
  15. Hsu, S., Huang, E, Wang, L., Banerjee, S., Winawer, S., and Friedman, E. (1994). Cell Growth Different. 5, 909-917.Google Scholar
  16. Inoue, H., Takahashi, M., Oomori, A., Sekiguchi, M., and Yoshioka, T. (1996). J. Cell Sci. Biochem. Biophys. Res. Commun. 218, 887-892.Google Scholar
  17. Ishijima, Y., Shimada, N., Fukuda, M., Miyazaki, H., Orlov, N. Y., Orlova, T. G., Yamada, T., and Kimura, N. (1999). FEBS Left. 445, 155-159.Google Scholar
  18. Izumiya, H., and Yamamoto, M. (1995). J. Biol. Chem. 270, 27859-27864.Google Scholar
  19. Janmey, P. A. (1998). Physiol. Rev. 78, 763-781.Google Scholar
  20. Kadrmas, E. E, Ray, P. D., and Lambeth, D. O. (1991). Biochim. Biophys. Acta 1074, 339-346.Google Scholar
  21. Kantor, J. D., McCormick, B., Steeg, P.S., and Zetter, B. R. (1993). Cancer Res. 53, 1971-1973.Google Scholar
  22. Kikkawa, S., Takahashi, K., Takahashi, K, Shimada, N., Vi, M., Kimura, N., and Katada, T. (1990). J. Biol. Chem. 265, 21536-21540.Google Scholar
  23. Kikkawa, S., Takahashi, K, Takahashi, K, Shimada, N., Vi, M., Kimura, N., and Katada, T. (1991). J. Biol. Chem. 265, 12795.Google Scholar
  24. Kimura, N., and Shimada, N. (1983). J. Biol. Chem. 258, 2278-2283.Google Scholar
  25. Kimura, N., and Shimada, N. (1988). J. Biol. Chem. 263, 4647-4653.Google Scholar
  26. Lascu, I., Chaffotte, A., Limbourg-Bouchon, B., and Veron, M. (1992). J. Biol. Chem. 267, 12775-12781.Google Scholar
  27. Lascu, I., Schaertl, S., Wang, C., Sarger, C., Giartosio, A., Briand, G., Lacombe, M. L., and Konrad, M. (1997). J. Biol. Chem. 272, 15599-15602.Google Scholar
  28. Lee, H. Y., and Lee, H. (1999). Cancer Lett. 145, 93-99.Google Scholar
  29. Leone, A., Flatow, V., King, C. R., Sandeen, M. A., Margulies, I. M., Liotta, L. A., and Steeg, P. S. (1991). Cell 65, 25-35.Google Scholar
  30. Leone, A., Flatow, V., VanHoutte, K, and Steeg, P. S. (1993). Oncogene 8, 2325-2333.Google Scholar
  31. Leung, S. M., and Hightower, L. E. (1997). J. Biol. Chem. 272, 2607-2614.Google Scholar
  32. Liang, P., and MacRae, T. H. (1997). J. Cell Sci. 110, 1431-1440.Google Scholar
  33. Liao, G., Kreitzer, G., Cook, T. A. and Gundersen, G. G. (1999). FASEB J. 13, S257-S260.Google Scholar
  34. Lombardi, D., Sacchi, A., D'Agostino, G., and Tibursi, G. (1995). Exp. Cell Res. 217, 267-271.Google Scholar
  35. Lu, Q., Park, H., Egger, L. A., and Inouye, M. (1996). J. Biol. Chem. 271, 32886-32893.Google Scholar
  36. MacDonald, N. J., Freije, J. M. P., Stracke, M. L., Manrow, R. E., and Steeg, P. S. (1996). J. Biol. Chem. 271, 25107-25116.Google Scholar
  37. Melki, R., Lascu, I., Carlier, M. E, and Veron, M. (1992). Biochem. Biophys. Res. Comman. 187, 65-72.Google Scholar
  38. Miles, E. W., Rhee, S., and Davies, D. R. (1999). J. Biol. Chem. 274, 12193-12196.Google Scholar
  39. Miyazaki, H., Fukuda, M., Ishijima, Y., Takagi, Y., Iimura, T., Negishi, A., Hirayama, R., Ishikawa, N., Amagasa, T., and Kimura, N. (1999). Clin. Cancer. Res. 5, 4301-4307.Google Scholar
  40. Munier, A., Feral, C., Milon, L., Pinon, V. P., Gyapay, G., Capeau, J., Guellaen, G., and Lacombe, M. L. (1998). FEBS Lett. 434, 289-294.Google Scholar
  41. Ogawa, K., Takai, H., Ogiwara, A., Yokota, E., Shimizu, T., Inaba, K, and Mohri, H. (1996). Mol. Biol. Cell 7, 1895-1907.Google Scholar
  42. Otero, A. D. (1990). Biochem. Pharmacal. 39, 1399-1404.Google Scholar
  43. Otero, A. S., Breitwieser, G. E., and Szabo, G. (1988). Science 242, 443-445.Google Scholar
  44. Otero, A. S. (1997). J. Biol. Chem. 272, 14690-14694.Google Scholar
  45. Otero, A. S., Doyle, M. B., Hartsough, M. T., and Steeg, P. S. (1999). Biochim. Biophys. Acta 1449, 157-168.Google Scholar
  46. Paravicini, G., Steinmayr, M., Andre, E., and Beeker-Andre, M. (1996). Biochem. Biophys. Res. Comman. 227, 82-87.Google Scholar
  47. Parks, R. E., and Agarwal, R. P. (1973). In The Enzymes (P. D. Boyer, ed.), vol. 8. Academic Press, New York, pp. 307-334.Google Scholar
  48. Pinon, V. P., Millot, G., Munier, A., Vassy, J., Linares-Cruz, G., Capeau, J., Calvo, E, and Lacombe, M. L. (1999). Exp. Cell Res. 246, 355-367.Google Scholar
  49. Randazzo, P. A., Northup, J. K., and Kahn, R. A. (1991). Science 254, 850-853.Google Scholar
  50. Randazzo, P.A., Northup, J. K., and Kahn, R. A. (1992). J. BioI. Chem. 267, 18182-18189.Google Scholar
  51. Ruggieri, R. and McCormick, E (1991). Nature (London) 353, 390-391.Google Scholar
  52. Russell, R. L., Pedersen, A. N., Kantor, J., Geisinger, K., Long, R., Zbieranski, N., Townsend, A., Shelton, B., Brunner, N., and Kute, T. E. (1998). Brit. J. Cancer 78, 710-717.Google Scholar
  53. Schaertl, S., Geeves, M. A., and Konrad, M. (1999). J. Biol. Chem. 274, 20159-20164.Google Scholar
  54. Schmid-Alliana, A., Menou, L, Manie, S., Schmid-Antomarchi, H., Millet, M-A., Giuriato, S., Ferrua, B., and Rossi, B. (1998). J. Biol. Chem. 273, 3394-3400.Google Scholar
  55. Sonnemann, J., and Mutzel, R. (1995). Biochem. Biophys. Res. Comman. 209, 490-496.Google Scholar
  56. Sorota, S., Chlenov, M., Du, X. Y., and Kagan, M. (1998). Circ. Res. 82, 971-979.Google Scholar
  57. Sprang, S. R. (1997). Anna. Rev. Biochem. 66, 639-678.Google Scholar
  58. Venturelli, D., Martinez, R., Melotti, P., Casella, I., Peschle, C., Cucco, C., Spampinato, G, Darzynkiewicz, Z., and Calabretta, B. (1995). Froc. Natl. Acad. Sci. USA 92, 7435-7439.Google Scholar
  59. Wagner, P. D., and Vu, N. D. (1995). J. Biol. Chem. 270, 21758-21764.Google Scholar
  60. Wagner, P. D., Steeg, P. S., and Vu, N. D. (1997). Proc. Natl. Acad. Sci. USA 94, 9000-9005.Google Scholar
  61. Xu, J., Liu, L. Z., Deng, X. E, Timmons, L., Hersperger, E., Steeg, P. S., Veron, M., and Shearn, A. (1996). Develop. Biol. 177, 544-557.Google Scholar
  62. Xu, L., Murphy, J. M., and Otero, A. S. (1996). J. Biol. Chem. 271, 21120-21125.Google Scholar
  63. Yeung, Y. G., Wang, Y. Einstein, D. B., Lee, P. S., and Stanley, E. R. (1998). J. Biol. Chem. 273, 17128-17137.Google Scholar
  64. Zhu, J., Tseng, Y. H., Kantor, J. D., Rhodes, C. J., Zetter, B. R., Moyers, J. S., and Kahn, C. R. (1999). Proc. Natl. Acad. Sci. USA 96, 14911-14918.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Angela de S. Otero
    • 1
  1. 1.Department of Molecular Physiology and Biological PhysicsUniversity of Virginia Medical SchoolCharlottesville

Personalised recommendations