Journal of Chemical Ecology

, Volume 26, Issue 7, pp 1635–1647

Alarm Response of Arius felis to Chemical Stimuli from Injured Conspecifics

  • Michael E. Smith
Article

Abstract

The hardhead catfish (Arius felis) showed increased activity when subjected to water containing chemical cues of injured conspecifics. This response was similar to the visually stimulated response to a model of a predatory fish. Arius felis also responded to chemical cues of injured sailfin mollies (Poecilia latipinna) with increased activity, but this was less than in response to conspecific chemical cues. A histological examination of Arius felis epidermis revealed that the alarm substance cells of marine catfish are similar to those of freshwater catfish. Responses to odors of injured individuals is common among ostariophysans, which are mostly freshwater fishes. This is the first demonstration of an alarm reaction in a marine ostariophysan.

Arius felis alarm response chemical stimuli Schreckstoff club cells chemoreception skin extract Ostariophysi alarm substance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Al-Hassan, J. M., Thompson, M., and Criddle, R. S. 1982. Composition of the proteinaceous gel secretion from the skin of the Arabian Gulf catfish (Arius thallasinus). Mar. Biol. 70:27–33.Google Scholar
  2. Al-Hassan, J. M., Thompson, M., Criddle, K. R., Summers, B., and Criddle, R. S. 1985. Catfish epidermal secretions in response to threat or injury: A novel defense response. Mar. Biol. 88:117–123.Google Scholar
  3. Al-Hassan, J. M., Thompson, M., Summers, B., and Criddle, R. S. 1987. Protein composition of the threat induced epidermal secretion from the Arabian Gulf catfish, Arius thallasinus (Ruppell). Comp. Biochem. Physiol. B 88:813–822.Google Scholar
  4. Ali, M., Thompson, M., Al-Hassan, J. M., Al-Saleh, J., Fayad, S., Assad, H., and Criddle, R. S. 1989. Comparative biochemical and pharmacological properties of epidermal secretions from ariid catfish from the Arabian Gulf. Comp. Biochem. Physiol. B 92:205–211.Google Scholar
  5. Boeseman, M. 1976. A short review of the Surinam Loricariinae, with additional information on Surinam Harttiinae, including the description of a new species (Loricariidae, Siluriformes). Zool. Meded. 50:154–177.Google Scholar
  6. Brown, G. E., and Godin, J.-G. J. 1999. Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata). Can. J. Zool. 77:562–570.Google Scholar
  7. Brown, G. E., and Smith, R. J. F. 1996. Foraging trade-offs in fathead minnows (Pimephales promelas): Acquired predator recognition in the absence of an alarm response. Ethology 102:776–785.Google Scholar
  8. Bryant, P. B. 1986. A study of the alarm system in selected fishes of northern Mississippi. Ph.D. dissertation. University of Mississippi, Oxford, MS.Google Scholar
  9. Cameron, A. N., and Endean, R. 1971. The axillary glands of the plotosid catfish Cnidoglanis macrocephalus. Toxicon 9:345–352.Google Scholar
  10. Cameron, A. N., and Endean, R. 1973. Epidermal secretions and the evolution of venom glands in fishes. Toxicon 11:401–410.Google Scholar
  11. Carson, F. L. 1990. Histotechnology, A Self-Instructional Text, 1st ed. ASCP Press, Chicago.Google Scholar
  12. Chapman, G. B., and Johnson, E. G. 1997. An electron microscope study of intrusions into alarm substance cells of the channel catfish. J. Fish Biol. 51:503–514.Google Scholar
  13. Chivers, D. P., and Smith, R. J. F. 1994. Intra-and interspecific avoidance of areas marked with skin extract from brook stickleback (Culaea inconstans) in a natural habitat. J. Chem. Ecol. 20:1517–1524.Google Scholar
  14. Chivers, D. P., and Smith, R. J. F. 1998. Chemical alarm signaling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5:338–352.Google Scholar
  15. Chivers, D. P., Brown, G. E., and Smith, R. J. F. 1995. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology 99:234–242.Google Scholar
  16. Conover, W. J. 1980. Practical Nonparametric Statistics, 2nd ed. John Wiley & Sons, New York.Google Scholar
  17. GarcÍa, C. E., RolÁn-Alvarez, E., and SÁnchez, L. 1992. Alarm reaction and alert state in Gambusia affinis (Pisces, Poeciliidae) in response to chemical stimuli from injured conspecifics. J. Ethol. 10:41–46.Google Scholar
  18. Gudger, E. W. 1916. The gaff-topsail, Felichthys felis, a sea catfish that carries its eggs in its mouth. Zoologica 2:123–158.Google Scholar
  19. Henderson, P. A., Irving, P. W., and Magurran, A. E. 1997. Fish pheromones and evolutionary enigmas: a reply to Smith. Proc. R. Soc. London Ser. B 264:451–453.Google Scholar
  20. Hibiya, T. 1982. An Atlas of Fish Histology—Normal and Pathological Features. Kodansha Ltd., Tokyo.Google Scholar
  21. Hoese, H. D. 1966. Ectoparasitism by juvenile sea catfish, Galeichthys felis. Copeia 4:880–881.Google Scholar
  22. Hoese, H. D., and Moore, R. H. 1998. Fishes of the Gulf of Mexico, Texas, Louisiana, and adjacent waters. Texas A&M University Press, College Station.Google Scholar
  23. Howe, N. R., and Sheikh, Y. M. 1975. Anthopleurine: A sea anemone alarm pheromone. Science 189:386–388.Google Scholar
  24. Hugie, D. M., Thuringer, P. L., and Smith, R. J. F. 1991. The response of the tidepool sculpin, Oligocottus maculosus, to chemical stimuli from injured conspecifics, alarm signally in the Cottidae (Pisces). Ethology 89:322–334.Google Scholar
  25. Jamzadeh, M. 1988. Ethological inquiry of alarm substance in channel catfish (Ictalurus punctatus). PhD dissertation. Southern Illinois University, Carbondale.Google Scholar
  26. Kats, L. B., and Dill, L. M. 1998. The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.Google Scholar
  27. Kratt, C. M., and Rittschof, D. 1991. Peptide attraction of hermit crabs Clibanarius vittatus (Bosc): Roles of enzymes and substrates. J. Chem. Ecol. 17:2347–2365.Google Scholar
  28. Magurran, A. E., Irving, P. W., and Henderson, P. A. 1996. Is there a fish alarm pheromone? A wild study and critique. Proc. R. Soc. London Ser. B 263:1551–1556.Google Scholar
  29. Malyukina, G. A., Marusov, E. A., and Karpov, A. K. 1983. Chemical communication in White Sea coastal cod, Gadus morhua marisalbi (Gadidae). J. Ichthyol. 23:122–127.Google Scholar
  30. Mathis, A., Chivers, D. P., and Smith, R. J. F. 1993. Population differences in responses of fathead minnows (Pimephales promelas) to visual and chemical stimuli from predators. Ethology 93:31–40.Google Scholar
  31. Meyers, G. S. 1960. The genera and ecological geography of South American banjo catfishes, family Aspredinidae. Stanford Icthyol. Bull. 7:132–139.Google Scholar
  32. Motta, P. J., Clifton, K. B., Hernandez, P., Eggold, B. T., Giordano, S. D., and Wilcox, R. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull. Mar. Sci. 56:185–200.Google Scholar
  33. Nordel, S. E. 1998. The response of female guppies, Poecilia reticulata, to chemical stimuli from injured conspecifics. Environ. Biol. Fish. 51:331–338.Google Scholar
  34. Pettis, R. J. 1991. Biologically active arginine-terminal peptides. PhD dissertation. University of North Carolina, Chapel Hill.Google Scholar
  35. Pettis, R. J., Erickson, B. W., Forward, R. B., and Rittschof, D. 1993. Superpotent synthetic tripeptide mimics of the mud-crab pumping pheromone. Int. J. Pept. Prot. Res. 42:312–319.Google Scholar
  36. Pfeiffer, W. 1970. Über die Schrecktoffzellen der Siluriformes (Ostariophysi, Pisces). Anthropol. Anz. 126:113–119.Google Scholar
  37. Pfeiffer, W. 1977. The distribution of fright reaction and alarm substance cells in fishes. Copeia 4:653–665.Google Scholar
  38. Reed, J. R. 1969. Alarm substances and fright reaction in some fishes of the southeastern United States. Trans. Am. Fish. Soc. 98:664–668.Google Scholar
  39. Rehnberg, B. G., Smith, R. J. F., and Sloley, B. D. 1987. The reaction of pearl dace (Pisces, Cyprinidae) to alarm substance: Time-course of behavior, brain amines, and stress physiology. Can. J. Zool. 65:2916–2921.Google Scholar
  40. Rittschof, D. 1990. Peptide-mediated behaviors in marine organisms: Evidence for a common theme. J. Chem. Ecol. 6:261–272.Google Scholar
  41. Rittschof, D., Kratt, C. M., and Clare, A. S. 1990. Gastropod predation sites: The roles of predator and prey in chemical attraction of the hermit crab Clibanarius vittatus (Bosc.). J. Mar. Biol. Assoc. U.K. 70:583–596.Google Scholar
  42. Rosen, D. E., and Greenwood, P. H. 1970. Origin of the Weberian aparatus and the relationships of the ostariophysian and gonorynchiform fishes. Am. Mus. Novit. 2428:1–25.Google Scholar
  43. Smith, R. J. F. 1981. Effect of food deprivation on the reaction of Iowa darters (Etheostoma exile) to skin extract. Can. J. Zool. 59:558–560.Google Scholar
  44. Smith, R. J. F. 1982. Reaction of Percina nigrofasciata, Ammocrypta beani, and Etheostoma swaini (Percidae, Pisces) to conspecific and intergeneric skin extracts. Can. J. Zool. 60:1067–1072.Google Scholar
  45. Smith, R. J. F. 1989. The response of Asterropteryx semipunctatus and Gnatholepis anjerensis (Pisces, Gobiidae) to chemical stimuli from injured conspecifics, an alarm response in gobies. Ethology 81:279–290.Google Scholar
  46. Smith, R. J. F. 1992. Alarm signals in fishes. Rev. Fish Biol. Fish. 2:33–63.Google Scholar
  47. Smith, R. J. F. 1997. Does one result trump all others? A response to Magurran, Irving and Henderson. Proc. R. Soc. London Ser. B 264:445–450.Google Scholar
  48. Smith, R. J. F., and Lawrence, B. J. 1992. The response of a bumblebee goby, Brachygobius sabanus, to chemical stimuli from injured conspecifics. Environ. Biol. Fish. 34:103–108.Google Scholar
  49. Suzuki, Y., and Kaneko, T. 1986. Demonstration of the mucous hemagglutinin in the club cells of eel skin. Dev. Comp. Immunol. 10:509–518.Google Scholar
  50. Tester, A. L. 1963. The role of olfaction in shark predation. Pac. Sci. 17:145–170.Google Scholar
  51. Tegtmeyer, K., and Rittschof, D. 1988. Synthetic peptide analogs to barnacle settlement pheromone. Peptides 9:1403–1406.Google Scholar
  52. Valentincic, T. B., and Caprio, J. 1994. Chemical and visual control of feeding and escape behaviors in the channel catfish Ictalurus punctatus. Physiol. Behav. 55:845–855.Google Scholar
  53. von Frisch, K. 1938. Zur psychologie des Fische-Schwarmes. Naturwissenschaften 26:601–606.Google Scholar
  54. von Frisch, K. 1941. Über einen Schreckstoff der Pischhcut und seine biologishce Bedeutung. Z. Vergl. Physiol. 29:46–145.Google Scholar
  55. Whitear, M., and MITTAL, A. K. 1983. Fine structure of the club cells in the skin of ostariophysan fish. Z. Mikrosk.-Anat. Forsch. 97:147–157.Google Scholar
  56. Wiseden, B. D., Chivers, D. P., and Smith, R. J. F. 1994. Risk-sensitive habitat use by brook stickleback (Culaea inconstans) in areas associated with minnow alarm pheromone. J. Chem. Ecol. 20:2975–2983.Google Scholar
  57. Yoakim, E. G., and Grizzle, J. M. 1982. Ultrastructure of alarm substance cells in the epidermis of the channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Biol. 20:213–221.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Michael E. Smith
    • 1
  1. 1.Marine Science InstituteThe University of Texas at AustinPort Aransas

Personalised recommendations