Advertisement

Journal of Chemical Ecology

, Volume 26, Issue 8, pp 1773–1794 | Cite as

Plant Secondary Compounds and Grasshoppers: Beyond Plant Defenses

  • Elizabeth A. Bernays
  • Reginald F. Chapman
Article

Abstract

Modern grasshoppers probably evolved from polyphagous ancestors endowed with the ability to tolerate many plant secondary compounds. This tolerance involves various behavioral and anatomical adaptations. Polyphagous grasshoppers have a relatively low level of sensitivity to the taste of many secondary compounds, and, if they do respond to the taste, have the capacity to habituate. This gives time for the induction of detoxifying enzymes so that unpalatable but potentially nutritious plants may be eaten safely. Associative learning involving secondary compounds may be important in food aversion learning, enabling the insects to avoid foods that have inappropriate nutrients, for example. Learning is also involved when grasshoppers develop associations between the taste of chemicals in the surface waxes of plants and internal leaf chemistry, enabling them to make faster decisions about the acceptability of a plant. Anatomically, the midgut ceca of polyphagous grasshoppers have well-developed posterior arms, and it is possible that these are especially important in detoxification, while some species, in addition, have a specialized pocket region in which macromolecules accumulate to be eliminated from the body when the lining of peritrophic envelope is drawn out. Polyphagous species also have thick peritrophic envelopes to which various phenolics become adsorbed. Finally, the midgut environment contains surfactants that reduce tannin–protein complexing except at very high tannin concentrations. Some polyphagous species can utilize secondary compounds as defensive substances or, in one case, in cuticular sclerotization. Grass feeding has evolved on numerous occasions from these polyphagous ancestors, and it has been associated with a loss of many of the characters providing protection from secondary compounds.

Grasshoppers polyphagy graminivory evolution secondary compound peritrophic envelope midgut ceca learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adams, C., and Bernays, E. A. 1978. The effect of combinations of deterrents on the feeding behavior of Locusta migratoria (L.). Entomol. Exp. Appl. 23:101–109.Google Scholar
  2. Behmer, S. T., Elias, D. O., and Bernays, E. A. 1999. Post-ingestive feedbacks and associative learning regulate the intake of unsuitable sterols in a generalist grasshopper. J. Exp. Biol. 202:739–748.Google Scholar
  3. Berenbaum, M. R. 1986. Target site insensitivity in insect-plant interactions, pp. 257–272 in L. B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  4. Berenbaum, M. R. 1990. Evolution of specialization in insect-umbellifer associations. Annu. Rev. Entomol. 35:319–343.Google Scholar
  5. Bernays, E. A. 1981. A specialized region of the gastric caeca of the locust, Schistocerca gregaria. Physiol. Entomol. 6:1–6.Google Scholar
  6. Bernays, E. A. 1982. The insect on the plant-a closer look, pp. 3–17, in J. H. Visser and A. K. Minks (eds.). Proceedings of the 5th International Symposium on Insect-Plant Relationships. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  7. Bernays, E. A. 1990. Plant secondary compounds deterrent but not toxic to the grass specialist acridid Locusta migratoria: Implications for the evolution of graminivory. Entomol. Exp. Appl. 54:53–56.Google Scholar
  8. Bernays, E. A. 1991. Relationship between deterrence and toxicity of plant secondary compounds to the polyphagous grasshopper Schistocerca americana. J. Chem. Ecol. 17:2519–2526.Google Scholar
  9. Bernays, E. A. 1992. Dietary mixing in generalist grasshoppers, pp. 146–148, in S. B. J. Menken, J. H. Visser, and P. Harrewijn (eds.). Proceedings of the 8th International Symposium on Insect-Plant Relationships. Kluwer, Dordrecht.Google Scholar
  10. Bernays, E. A., and Chapman, R. F. 1970. Experiments to determine the basis of food selection by Chorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae) in the field. J. Anim. Ecol. 39:761–776.Google Scholar
  11. Bernays, E. A., and Chapman, R. F. 1973. The role of food plants in the survival and development of Chorthoicetes terminifera (Walker) under drought conditions. Aust. J. Zool. 21:575–592.Google Scholar
  12. Bernays, E. A., and Chapman, R. F. 1975. The importance of chemical inhibition of feeding in host-plant selection by Chorthippus parallelus (Zetterstedt). Acrida 4:83–93.Google Scholar
  13. Bernays, E. A., and Chapman, R. F. 1977. Deterrent chemicals as a basis of oligophagy in Locusta migratoria (L.). Ecol. Entomol. 2:1–18.Google Scholar
  14. Bernays, E. A., and Chapman, R. F. 1978. Plant chemistry and acridoid feeding behavior, pp. 99–141, in J. B. Harborne (ed.). Coevolution of Plants and Animals. Academic Press, London.Google Scholar
  15. Bernays, E. A., and Chapman, R. F. 1987. Evolution of deterrent responses in plant-feeding insects, pp. 159–173, in R. F. Chapman, E. A. Bernays, and J. G. Stoffolano (eds.). Perspectives in Chemoreception and Behavior. Springer Verlag, New York.Google Scholar
  16. Bernays, E. A., and Chapman, R. F. 1998. Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: Effects of food. J. Comp. Physiol. A 183:69–76.Google Scholar
  17. Bernays, E. A., and Chapman, R. F. 2000. A neurophysiological study of sensitivity to a feeding deterrent in two sister species of Heliothis with different diet breadths. J. Insect Physiol. 46:905–912.Google Scholar
  18. Bernays, E. A., and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.Google Scholar
  19. Bernays, E. A., and Lewis, A. C. 1986. The effect of wilting on palatability of plants to Schistocerca gregaria, the desert locust. Oecologia 70:132–135.Google Scholar
  20. Bernays, E. A., and Raubenheimer, D. 1991. Dietary mixing in grasshoppers: changes in acceptability of different plant secondary compounds associated with low levels of dietary protein. J. Insect Behav. 4:545–556.Google Scholar
  21. Bernays, E. A., and Woodhead, S. 1982a. Plant phenols utilized as nutrients by a phytophagous insect. Science 216:201–203.Google Scholar
  22. Bernays, E. A., and Woodhead, S. 1982b. Incorporation of dietary phenols into the cuticle in the tree locust Anacridium melanorhodon. J. Insect Physiol. 28:601–606.Google Scholar
  23. Bernays, E. A., Chapman, R. F., Horsey, J., and Leather, E. 1974. The inhibitory effect of seedling grasses on feeding and survival of acridids. Bull. Entomol. Res. 64:413–420.Google Scholar
  24. Bernays, E. A., Blaney, W. M., Chapman, R. F., and Cook, A. G. 1976. The ability of Locusta migratoria to perceive plant surface waxes. Symp. Biol. Hung. 16:35–40.Google Scholar
  25. Bernays, E. A., Chapman, R. F., Mccaffery, A., Leather, E., and Modder, W. W. D. 1977a. The relationship of Zonocerus variegatus (L.) (Acridoidea: Pyrgomorphidae) and cassava (Manihot esculenta). Bull. Entomol. Res. 67:391–404.Google Scholar
  26. Bernays, E. A., Edgar, J. A., and Rothschild, M. 1977b. Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper Zonocerus variegatus. J. Zool. 182:85–87.Google Scholar
  27. Bernays, E. A., Chamberlain, D. J., and Mccarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea. Entomol. Exp. Appl. 28:158–166.Google Scholar
  28. Bernays, E. A., Chamberlain, D. J., and Woodhead, S. 1983. Phenols as nutrients for a phytophagous insect: Anacridium melanorhodon. J. Insect Physiol. 29:535–539.Google Scholar
  29. Bernays, E. A., Howard, J. J., Champagne, D., and Estesen, B. J. 1991. Rutin: A phagostimulant for the grasshopper Schistocerca americana. Entomol. Exp. Appl. 60:19–28.Google Scholar
  30. Bernays, E. A., Bright, K., Howard, J. J., Raubenheimer, D., and Champagne, D. 1992. Variety is the spice of life: Frequent switching between foods in the polyphagous grasshopper, Taeniopoda eques. Anim. Behav. 44:721–731.Google Scholar
  31. Bernays, E. A., Gonzalez, N., Angel, J., and Bright, K. 1995. Food mixing by a generalist grasshopper: Secondary compounds structure feeding behavior. J. Insect Behav. 8:161–180.Google Scholar
  32. Bernays, E. A., Augner, M., and Abbot, P. 1997. A mechanism for incorporating an unpalatable food in the diet of a generalist herbivore. J. Insect Behav. 10:841–858.Google Scholar
  33. Blackith, R. E., and Blackith, R. M. 1966. The anatomy and physiology of morabine grasshoppers I. Digestive and reproductive systems. Aust. J. Zool. 14:31–48.Google Scholar
  34. Blaney, W. M., and Chapman, R. F. 1970. The functions of the maxillary palps of Acrididae (Orthoptera). Entomol. Exp. Appl. 13:363–376.Google Scholar
  35. Blaney, W. M., and Simmonds, M. S. J. 1985. Food selection by locusts: The role of learning in rejection behavior. Entomol. Exp. Appl. 39:273–278.Google Scholar
  36. BopprÉ, M., Seibt, U., and Wickler, W. 1984. Pharmacophagy in grasshoppers: Zonocerus being attracted to and ingesting pure pyrrolizidine alkaloids. Entomol. Exp. Appl. 35:115–117.Google Scholar
  37. Bright, K., and Bernays, E. A. 1991. Distinctive flavors influence mixing of nutritionally identical food by grasshoppers. Chem. Senses 16:329–336.Google Scholar
  38. Champagne, D., and Bernays, E. A. 1991. Inadequate sterol profile as a basis of food aversion by a grasshopper. Physiol. Entomol. 16:391–400.Google Scholar
  39. Chapman, R. F. 1964. The structure and wear of the mandibles of some African grasshoppers. Proc. Zool. Soc. London 142:107–121.Google Scholar
  40. Chapman, R. F. 1977. The role of the leaf surface in food selection by acridids and other insects. Colloq. Int. C.N.R.S. 265:133–149.Google Scholar
  41. Chapman, R. F. 1982. Chemoreceptors: The significance of receptor numbers. Adv. Insect Physiol. 16:247–356.Google Scholar
  42. Chapman, R. F. 1988. The relationship between diet and the size of the midgut caeca in grasshoppers (Insecta: Orthoptera: Acridoidea). Zool. J. Linn. Soc. 94:319–338.Google Scholar
  43. Chapman, R. F., and Ascoli-christensen, A. 1999. Sensory coding in the grasshopper (Orthoptera: Acrididae) gustatory system. Ann. Entomol. Soc. Am. 92:873–879.Google Scholar
  44. Chapman, R. F., and Bernays, E. A. 1977. The chemical resistance of plants to insect attack. Scripta Varia 41:603–633.Google Scholar
  45. Chapman, R. F., and Fraser, J. 1989. The chemosensory system of the monophagous grasshopper, Bootettix argentatus Bruner (Orthoptera: Acrididae). Int. J. Insect Morphol. Embryol. 18:111–118.Google Scholar
  46. Chapman, R. F., and Lee, J. C. 1991. Environmental effects on numbers of peripheral chemoreceptors on the antennae of a grasshopper. Chem. Senses 16:607–616.Google Scholar
  47. Chapman, R. F., and Sword, G. A. 1993. The importance of palpation in food selection by a polyphagous grasshopper (Orthoptera: Acridiae). J. Insect Behav. 6:79–91.Google Scholar
  48. Chapman, R. F., and Sword, G. A. 1997. Polyphagy in the Acridomorpha, pp. 183–195, in S. K. Gangwere, M. C. Muralirangan, and M. Muralirangan (eds.). The Bionomics of Grasshoppers, Katydids and their Kin. CAB International, Wallingford, UK.Google Scholar
  49. Chapman, R. F., and Thomas, J. G. 1978. The numbers and distribution of sensilla on the mouthparts of Acridoidea. Acrida 7:115–148.Google Scholar
  50. Chapman, R. F., Page, W. W., and Mccaffery, A. R. 1986. Bionomics of the variegated grasshopper (Zonocerus variegatus) in West and Central Africa. Annu. Rev. Entomol. 31:479–505.Google Scholar
  51. Chapman, R. F., Bernays, E. A., and Wyatt, T. 1988. Chemical aspects of host-plant specificity in three Larrea-feeding grasshoppers. J. Chem. Ecol. 14:561–579.Google Scholar
  52. Chapman, R. F., Ascoli-christensen, A., and White, P. R. 1991. Sensory coding for feeding deterrence in the grasshopper Schistocerca americana. J. Exp. Biol. 158:241–259.Google Scholar
  53. Coley, P. D., Bryant, J. P., and Chapin, S. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.Google Scholar
  54. Cottee, P., Bernays, E. A., and Mordue, A. J. 1988. Comparisons of deterrency and toxicity of selected secondary plant compounds to an oligophagous and a polyphagous acridid. Entomol. Exp. Appl. 46:241–247.Google Scholar
  55. Dow, J. A. T. 1981. Countercurrent flows, water movements and nutrient absorption in the locust midgut. J. Insect Physiol. 27:579–585.Google Scholar
  56. Farrell, B. D., Mitter, C., and Futuyma. D. J. 1992. Diversification at the insect-plant interface. BioScience 42:34–42.Google Scholar
  57. Feeny, P. 1975. Biochemical coevolution between plants and their insect herbivores, pp. 3–19, in L. E. Gilbert and P. H. Raven (eds.). Coevolution of Plants and Animals. Texas University Press, Austin, Texas.Google Scholar
  58. Feeny, P. 1992. The evolution of chemical ecology: contributions from the study of herbivorous insects, pp. 1–44, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego.Google Scholar
  59. Felton, G. W., Duffey, S. S., Vail, P. V., Kaya, H. K., and Manning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13:947–958.Google Scholar
  60. Gelperin, A., and Forsythe, D. 1975. Neuroethological studies of learning of mollusks, pp. 239–250, in J. C. Fentress (ed.). Simpler Networks and Behaviour. Sinauer, New York.Google Scholar
  61. Greenwood, M., and Chapman, R. F. 1984. Differences in numbers of sensilla on the antennae of solitarious and gregarious Locusta migratoria L. (Orthoptera: Acrididae). Int. J. Insect Morphol. Embryol. 13:295–301.Google Scholar
  62. Hanson, F. E., and Dethier, V. G. 1973. Role of gustation and olfaction in food plant discrimination in the tobacco hornworm, Manduca sexta. J. Insect Physiol. 19:1019–1034.Google Scholar
  63. Hartmann, T. 1996. Diversity and variability of plant secondary metabolism: A mechanistic view. Entomol. Exp. Appl. 80:177–188.Google Scholar
  64. Husain, M. A., Mathur, C. B., and Roonwal, M. L. 1946. Studies on Schistocerca gregaria (Forskål) XIII. Food and feeding habits of the desert locust. Indian J. Entomol. 8:141–163.Google Scholar
  65. Jermy, T. 1966. Feeding inhibitors and food preference in chewing phytophagous insects. Entomol. Exp. Appl. 9:1–12.Google Scholar
  66. Jermy, T., Bernays, E. A., and Szentesi, A. 1982. The effect of repeated exposure to feeding deterrents on their acceptability to phytophagous insects, pp. 25–32, in J. H. Visser and A. K. Minks (eds.). Proceedings of the 5th International Symposium on Insect-Plant Relationships. Pudoc, Wageningen.Google Scholar
  67. Lee, J., and Bernays, E. A. 1988. Declining acceptability of a food plant for the polyphagous grasshopper Schistocerca americana: The role of food aversion learning. Physiol. Entomol. 13:291–301.Google Scholar
  68. Lee, J., and Bernays, E. A. 1990. Food tastes and toxic effects: associative learning by the polyphagous grasshopper Schistocerca americana (Drury) (Orthoptera: Acrididae). Anim. Behav. 39:163–173.Google Scholar
  69. Martin, J. S., Martin, M. M., and Bernays, E. A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implications for theories of plant defense. J. Chem. Ecol. 13:605–622.Google Scholar
  70. Modder, W. W. D. 1984. The attraction of Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) to the weed Chromolaena odorata and associated feeding behaviour. Bull. Entomol. Res. 74:239–247.Google Scholar
  71. Otte, D., and Joern, A. 1977. On feeding patterns in desert grasshoppers and the evolution of specialized diets. Proc. Acad. Natl. Sci. J. Phil. 128:89–126.Google Scholar
  72. Rowell, C. H. F., and Flook, P. K. 1998. Phylogeny of the Caelifera and the Orthoptera as derived from ribosomal gene sequences. J. Orthoptera Res. 7:147–156.Google Scholar
  73. Snyder, M. J., and Glendinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A 179:255–261.Google Scholar
  74. StÁdler, E. 1992. Behavioral responses of insects to plant secondary compounds, pp. 45–88, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. II. Academic Press, San Diego.Google Scholar
  75. Szentesi, A., and Bernays, E. A. 1984. A study of behavioral habituation to a feeding deterrent in nymphs of Schistocerca gregaria. Physiol. Entomol. 9:329–340.Google Scholar
  76. White, P. R., and Chapman, R. F. 1990. Tarsal chemoreception in the polyphagous grasshopper Schistocerca americana: Behavioural assays, sensilla distributions and electrophysiology. Physiol. Entomol. 15:105–121.Google Scholar
  77. White, P. R., Chapman, R. F., and Ascoli-christensen, A. 1990. Interactions between two neurons in contact chemosensilla of the grasshopper, Schistocerca americana. J. Comp. Physiol. A 167:431–436.Google Scholar
  78. Whitman, D. 1988. Allelochemical interactions among plants, herbivores, and their predators, pp. 11–64, in P. Barbosa, and D. K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions, John Wiley, New York.Google Scholar
  79. Woodhead, S., and Bernays, E. A. 1977. Changes in release rate of cyanide in relation to palatability of sorghum to insects. Nature 270:235–236.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Elizabeth A. Bernays
    • 1
  • Reginald F. Chapman
    • 2
  1. 1.Department of EntomologyUniversity of ArizonaTucson
  2. 2.Division of NeurobiologyUniversity of ArizonaTucson

Personalised recommendations