Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 1, pp 123–131 | Cite as

A Quantitative Approach to Membrane Binding of Human Ubiquitous Mitochondrial Creatine Kinase Using Surface Plasmon Resonance


We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes tocharacterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). Whilethe sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids,especially cardiolipin, this report provides the first experimental evidence on the membraneinteraction of an uMtCK isoform. Qualitative measurements showed that liposomes containing16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochromec, but not bovine serum albumin. Quantitative parameters could be derived only for themembrane interaction of octameric human uMtCK using an improved analytical approach.Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneousinteraction suggesting two independent binding sites. Rate constants of the two sites differedby one order of magnitude, while their affinity constants were both about 80–100 nM. Thedata obtained demonstrate that surface plasmon resonance with immobilized liposomes is asuitable approach to characterize the binding of peripheral proteins to a lipid bilayer and thatthis method yields consistent quantitative binding parameters.

Mitochondrial creatine kinase protein-lipid interaction membrane binding cardiolipin surface plasmon resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beutner, G., Rück, A., Riede, B., Welte, W., and Brdiczka, D. (1996). FEBS Lett. 396, 189-195.Google Scholar
  2. Beutner, G., Rück, A., Riede, B., and Brdiczka, D. (1998). Biochim. Biophys. Acta 1368, 7-18.Google Scholar
  3. Bradford, M. M. (1976). Anal. Biochem. 72, 248-254.Google Scholar
  4. Brooks, S. P. J., and Suelter, C. H. (1987). Arch. Biochem. Biophys. 253, 122-132.Google Scholar
  5. Brown, L. R., and Wüthrich, K. (1977). Biochim. Biophys. Acta 468, 389-410.Google Scholar
  6. Cheneval, D., Carafoli, E., Powell, G. L., and Marsh, D. (1989). Eur J. Biochem 186, 415-419.Google Scholar
  7. De Kruijff, B., and Cullis, P. R. (1980). Biochim. Biophys. Acta 602, 477-490.Google Scholar
  8. Fedosov, S. N., Belousova, L.V., and Plesner, I.W. (1993). Biochem. Biophys. Acta 1153, 322-330.Google Scholar
  9. Fritz-Wolf, K., Schnyder, T., Wallimann, T., and Kabsch, W. (1996). Nature (London) 381, 341-345.Google Scholar
  10. Furter, R., Kaldis, P., Furter-Graves, E. M., Schnyder, T., Eppenberger, H. M., and Wallimann, T. (1992). Biochem. J. 288, 771-775.Google Scholar
  11. Hall, N., and DeLuca, M. (1980). Arch. Biochem. Biophys. 201, 674-677.Google Scholar
  12. Heimburg T., and Marsh, D. (1995). Biophys. J. 69, 536-546.Google Scholar
  13. Heyse, S., Ernst, O. P., Dienes, Z., Hofmann, K. P., and Vogel, H. (1997). Biochemistry 37, 507-522.Google Scholar
  14. Johnson, B., Lofas, S., and Lindquist, G. (1991). Anal. Biochem. 198, 268-277.Google Scholar
  15. Khuchua, Z. A., Qin, W., Boero, J., Cheng, J., Payne, R. M., Saks, V. A., and Strauss, A. W. (1998). J. Biol. Chem. 273, 22990-22996.Google Scholar
  16. Lange C., and Koch, K.-W. (1997). Biochemistry 36, 12019-12026.Google Scholar
  17. Lipskaya, T. Y., Templ, V. D., Belousova, L. V., Molokova, E. V., and Rybina, I. V. (1980). Biochimia USSR 45, 877-886.Google Scholar
  18. Marcillat, O., Goldschmidt, D., Eichenberger, D., and Vial, C. (1987). Biochem. Biophys. Acta 890, 233-241.Google Scholar
  19. Masson, L., Mazza, A., and Brousseau, R. (1994). Biochemistry 218, 405-412.Google Scholar
  20. Milner-White, E. J., and Watts, D. C. (1971). Biochem. J. 122, 727-740.Google Scholar
  21. Müller, M., Moser, R., Cheneval, D., and Carafoli, E. (1985). J. Biol. Chem. 260, 3839-3843.Google Scholar
  22. Myszka, D. G. (1997). Current Opinions Biotechnol. 8, 50-57.Google Scholar
  23. O'Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., and Wallimann, T. (1997). FEBS Lett. 414, 253-257.Google Scholar
  24. Payne R. M., Haas, R. C., and Strauss A. W. (1991). Biochim. Biophys. Acta 1089, 352-361.Google Scholar
  25. Rojo, M., Hovius, R., Demel, R., Wallimann, T., Eppenberger, H. M., and Nicolay, K. (1991a). FEBS Lett. 281, 123-129.Google Scholar
  26. Rojo, M., Hovius, R., Demel, R. A., Nicolay, K., and Wallimann, T. (1991b) J. Biol. Chem. 266, 20290-20295.Google Scholar
  27. Rytomaa, M., Mustonen, P., and Kinnunen, P. K. (1992). J. Biol. Chem. 267, 22243-22248.Google Scholar
  28. Saks, V. A., Khuchua, Z. A., Kuznetsov, V. A., Veksler, V. I., and Sharov, V. G. (1986) Biochem. Biophys. Res. Commun. 139, 1262-1271.Google Scholar
  29. Salamon Z., and Tollin, G. (1996). Biophys. J. 71, 848-857.Google Scholar
  30. Salamon, Z., Macleod, H. A., and Tollin, G. (1997). Biochim. Biophys. Acta 1331, 131-152.Google Scholar
  31. Schlame, M., and Augustin, W. (1985). Biomed. Biochim. Acta 44, 1083-1088.Google Scholar
  32. Schlattner, U., Forstner, M., Eder, M., Stachowiak, O., Fritz-Wolf, K., and Wallimann, T. (1998). Mol. Cell. Biochem. 184, 125-140.Google Scholar
  33. Schlegel, J., Wyss, M., Eppenberger, H. M., and Wallimann, T. (1990). J. Biol. Chem. 265, 9221-9227.Google Scholar
  34. Schuck, P., and Minton, A. P. (1996). Trends Biochem. Sci. 252, 458-460.Google Scholar
  35. Soboll, S., Brdiczka, D., Jahnke, D., Schmidt, A., Schlattner, U., Wendt, S., Wyss, M., and Wallimann T. (1999). J. Mol. Cell. Cardiol. 31, 857-866.Google Scholar
  36. Stachowiak, O., Dolder, M., and Wallimann, T. (1996). Biochemistry 35, 15522-15528.Google Scholar
  37. Stachowiak, O., Schlattner, U., Dolder, M., and Wallimann, T. (1998). Mol. Cell. Biochem. 184, 141-151.Google Scholar
  38. Steffner, P., and Markey, F. (1997). When the chips are down. J. Biomol. Interact. Anal. 4, 11-15.Google Scholar
  39. Vacheron, M.-J., Clottes, E., Chautard, C., and Vial, C. (1997). Arch. Biochem. Biophys. 344, 316-324.Google Scholar
  40. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. (1992). Biochem. J. 281, 21-40.Google Scholar
  41. Wyss, M., Smeitink, J., Wevers, R. A., and Wallimann, T. (1992). Biochim. Biophys. Acta 1102, 119-166.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  1. 1.Institute of Cell BiologyETH ZürichZürichSwitzerland
  2. 2.Institute of Cell BiologyETH ZürichZürichSwitzerland

Personalised recommendations