Climatic Change

, Volume 46, Issue 1–2, pp 115–158 | Cite as

Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation

  • Philip M. Fearnside

Abstract

Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×109 t of biomasscarbon of these types is exposed to burning annually,of which 1.1×109 t is emitted to the atmospherethrough combustion and 49×106 t is converted tocharcoal (including 26–31×106 t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×109 t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×109 t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×109 t C year-1 resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×109 t ofCO2-equivalent carbon under a low trace gasscenario and 3.83×109 t under a high trace gasscenario. Of these totals, 1.06×109 t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×109 t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×109 t C, equivalent to 2.0–2.4×109 t of CO2-equivalent carbon. Adding emissions of0.4×109 t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×109 t C, equivalent to 2.4–2.9×109 t of CO2-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×109 t C year-1)calculated for the 1981–1990 period is 50% higherthan the 1.6×109 t C year-1 value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, W.: 1965, The African Husbandman, Barnes and Noble, New York, p. 265.Google Scholar
  2. Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C.: 1988, ‘Biomass-Burning Emissions and Associated Haze Layers over Amazonia’, J. Geophys. Res. (Atmos.) 93 (D2), 1509-1527.Google Scholar
  3. Araujo, T. M.: 1995, Investigação das Taxas de Dióxido de Carbono Gerado em Queimadas na Região Amazônica, Ph.D. Dissertation in Mechanical Engineering, Universidade Estadual Paulista (UNESP), Guaratinguetá, São Paulo, Brazil, p. 212.Google Scholar
  4. Araujo, T. M., Carvalho Jr., J. A., Higuchi, N., Brasil Jr., A. C. P., and Mesquita, A. L. A.: 1997, ‘Estimativa de Taxas de Liberação de Carbono em Experimento de Queimada no Estado do Pará’, Anais da Academia Brasileira de Ciências 69, 575-585.Google Scholar
  5. Azevedo, L. G. and Adamoli, J.: 1988, ‘Avaliação Agroecológica dos Recursos Naturais da Região dos Cerrados’, in VI Simpósio sobre Cerrado, Empresa Brasileira de Pesquisa Agropecuária-Centro de Pesquisa Agropecuária dos Cerrados (EMBRAPA-CPAC), Planaltina, DF, Brazil, pp. 729-761.Google Scholar
  6. Barbosa, R. I.: 1994, Efeito Estufa na Amazônia: Estimativa da Biomassa e a Quantificação do Estoque e Liberação de Carbono na Queima de Pastagens Convertidas de Florestas Tropicais em Roraima, Brasil, Masters Thesis in Ecology, Instituto Nacional de Pesquisas da Amazônia (INPA)/Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil, p. 85.Google Scholar
  7. Barbosa, R. I.: 1998, Avaliação da Área dos Sistemas Naturais e Agroecossistemas Atingida por Incêndios no Estado de Roraima (01.12.97 a 30.04.98), Instituto Nacional de Pesquisas da Amazônia/NÚcleo de Pesquisas de Roraima, Boa Vista, Roraima, Brazil, p. 30.Google Scholar
  8. Barbosa, R. I. and Fearnside, P. M.: 1996, ‘Pasture Burning in Amazonia: Dynamics of Residual Biomass and the Storage and Release of Aboveground Carbon’, J. Geophys. Res. (Atmos.) 101 (D20), 25,847-25,857.Google Scholar
  9. Beardsley, T.: 1998, ‘In the Heat of the Night: Warmer Nights May Be Slowing Tropical Forest Growth and Raising Carbon Dioxide Levels’, Scient. Amer. 279 (4), 12.Google Scholar
  10. Bogdonoff, P., Detwiler, R. P., and Hall, C. A. S.: 1985, ‘Land Use Change and Carbon Exchange in the Tropics: III. Structure, Basic Equations, and Sensitivity Analysis of the Model’, Environ. Manage. 9, 345-354.Google Scholar
  11. Borges, L.: 1992, ‘Desmatamento Emite Só 1,4% de Carbono, Diz Inpe’, O Estado de São Paulo 10 April 1992, p. 13.Google Scholar
  12. Brazil, Comissão Interministerial para Preparação da Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento (CIMA): 1991a, O Desafio do Desenvolvimento Sustentável: Relatório do Brasil para a Conferência das Nações Unidas Sobre Meio Ambiente e Desenvolvimento, CIMA, Brasilia, DF, Brazil, p. 204.Google Scholar
  13. Brazil, Comissão Interministerial para Preparação da Conferência das Nações Unidas Sobre Meio Ambiente e Desenvolvimento (CIMA): 1991b, Subsídio Técnico para Elaboração do Relatório Nacional do Brasil para a Conferência das Nações Unidas Sobre Meio Ambiente e Desenvolvimento, CIMA, Brasilia, DF, Brazil, p. 172.Google Scholar
  14. Brazil, Instituto Brasileiro de Geografia e Estatística (IBGE) and Instituto Brasileiro de Desenvolvimento Florestal (IBDF): 1988, ‘Mapa de Vegetação do Brasil’, Map Scale 1:5,000,000, Instituto Brasileira de Meio Ambiente e Recursos Naturais e Renováveis (IBAMA), Brasilia, DF, Brazil.Google Scholar
  15. Brazil, Instituto Nacional de Pesquisas Espaciais (INPE): 1996, Projeto PRODES. Levantamento das Áreas Desflorestadas na Amazônia Legal no Período 1991-1994. Resultados, INPE, São Jose dos Campos, São Paulo, Brazil, p. 10.Google Scholar
  16. Brazil, Instituto Nacional de Pesquisas Espaciais (INPE): 1998, Amazônia: Desflorestamento 1995-1997, Instituto Nacional de Pesquisas Espaciais (INPE), São Jose dos Campos, São Paulo, Document released via internet (http://www.inpe.br).Google Scholar
  17. Brazil, Instituto Nacional de Pesquisas Espaciais (INPE): 1999, Monitoramento da Floresta Amazônica Brasileira por Satélite/Monitoring of the Brazilian Amazon Forest by Satellite: 1997-1998, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Document released via internet (http://www.inpe.br).Google Scholar
  18. Brown, S.: 1997, Estimating Biomass and Biomass Change of Tropical Forests: A Primer, FAO Forestry Paper 134, Food and Agriculture Organization of the United Nations (FAO), Rome, p. 55.Google Scholar
  19. Brown, S. and Lugo, A. E.: 1990, ‘Tropical Secondary Forests’, J. Trop. Ecol. 6, 1-32.Google Scholar
  20. Brown, S. and Lugo, A. E.: 1992, ‘Aboveground Biomass Estimates for Tropical Moist Forests of the Brazilian Amazon’, Interciencia 17, 8-18.Google Scholar
  21. Brown, S., Gillespie, A. J. R., and Lugo, A. E.: 1989, ‘Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data’, For. Sci. 35, 881-902.Google Scholar
  22. Carvalho Jr., J. A., Santos, J. M., Santos, J. C., Leitão, M. M., and Higuchi, N.: 1995, ‘A Tropical Rainforest Clearing Experiment by Biomass Burning in the Manaus Region’, Atmos. Environ. 29, 2301-2309.Google Scholar
  23. Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B.: 1998, ‘Forest-and Species-Level Growth Responses of Tropical Rain Forest Trees to Interannual Climatic Variation, and Their Relation to the Global Atmospheric CO2 Anomaly: A 13-Year Record’, in Abstracts, Meeting of Ecological Society of America, 2-6 Aug. 1998, Baltimore, MD, p. 44.Google Scholar
  24. Cofer, W. R., Levine, J. S., Riggan, P. H., Sebacher, D. I., Winstead, E. L., Shaw, E. F., Brass, J. A., and Ambrosia, V. G.: 1988, ‘Trace Gas Emissions from a Mid-Latitude Prescribed Chaparral Fire’, J. Geophys. Res. (Atmos.) 93, 1653-1658.Google Scholar
  25. Crutzen, P. J. and Andreae, M. O.: 1990, ‘Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles’, Science 250, 1669-1678.Google Scholar
  26. Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P.: 1985, ‘Tropospheric Chemical Composition Measurements in Brazil during the Dry Season’, J. Atmos. Chem. 2, 233-256.Google Scholar
  27. da Silva, M. C.: 1991, Ecologia de Subsistência de uma População Cabocla na Amazônia Brasileira, Master's Thesis in Ecology, Instituto Nacional de Pesquisas da Amazonia (INPA)/Universidade Federal do Amazonas (UFAM), Manaus, Brazil, p. 103.Google Scholar
  28. de Castro, E. A. and Kauffman, J. B.: 1998, ‘Ecosystem Structure in Brazilian Cerrado: A Vegetation Gradient of Aboveground Biomass, Root Mass and Consumption by Fire’, J. Trop. Ecol. 14, 263-283.Google Scholar
  29. Dias, B. F. S.: 1996, ‘Cerrados: Uma Caracterização’, in Dias, B. (ed.), Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais Renováveis, Fundação Pró-Natureza (FUNATURA), Brasilia, Brazil, pp. 11-25.Google Scholar
  30. Ewel, J., Berish, C., Brown, B., Price, N., and Raich, J.: 1981, ‘Slash and Burn Impacts on a Costa Rican Wet Forest Site’, Ecology 62, 816-829.Google Scholar
  31. FAO (Food and Agriculture Organization of the United Nations): 1993, Forest Resources Assessment 1990: Tropical Countries, FAO Forestry Paper 112, FAO, Rome, p. 61 + annexes.Google Scholar
  32. FAO (Food and Agriculture Organization of the United Nations): 1995, Forest Resources Assessment 1990: Global Synthesis, FAO Forestry Paper 124, FAO, Rome, p. 46 + annexes.Google Scholar
  33. FAO (Food and Agriculture Organization of the United Nations): 1996, Forest Resources Assessment 1990: Survey of Tropical Forest Cover and Study of Change Processes, FAO Forestry Paper 130, FAO, Rome, p. 152.Google Scholar
  34. Fearnside, P. M.: 1984a, ‘Land Clearing Behaviour in Small Farmer Settlement Schemes in the Brazilian Amazon and its Relation to Human Carrying Capacity’, in Chadwick, A. C. and Sutton, S. L. (eds.), Tropical Rain Forest: The Leeds Symposium, Leeds Philosophical and Literary Society, Leeds, U.K., pp. 255-271.Google Scholar
  35. Fearnside, P. M.: 1984b, ‘Simulation of Meteorological Parameters for Estimating Human Carrying Capacity in Brazil's Transamazon Highway Colonization Area’, Trop. Ecol. 25, 134-142.Google Scholar
  36. Fearnside, P. M.: 1986, Human Carrying Capacity of the Brazilian Rainforest, Columbia University Press, New York, p. 293.Google Scholar
  37. Fearnside, P. M.: 1989, ‘Burn Quality Prediction for Simulation of the Agricultural System of Brazil's Transamazon Highway Colonists’, Turrialba 39, 229-235.Google Scholar
  38. Fearnside, P. M.: 1990a, ‘The Rate and Extent of Deforestation in Brazilian Amazonia’, Environ. Conserv. 17, 213-226.Google Scholar
  39. Fearnside, P. M.: 1990b, ‘Fire in the Tropical Rain Forests of the Amazon Basin’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer-Verlag, Heidelberg, pp. 106-116.Google Scholar
  40. Fearnside, P. M.: 1991, ‘Greenhouse Gas Contributions from Deforestation in Brazilian Amazonia’, in Levine, J. S. (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, pp. 92-105.Google Scholar
  41. Fearnside, P. M.: 1992a, ‘Forest Biomass in Brazilian Amazonia: Comments on the Estimate by Brown and Lugo’, Interciencia 17, 19-27.Google Scholar
  42. Fearnside, P. M.: 1992b, Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon, Carbon Emissions and Sequestration in Forests: Case Studies from Developing Countries, Vol. 2, LBL-32758, UC-402, Climate Change Division, Environmental Protection Agency, Washington, DC and Energy and Environment Division, Lawrence Berkeley Laboratory (LBL), University of California (UC), Berkeley, CA, p. 73.Google Scholar
  43. Fearnside, P. M.: 1993a, ‘Desmatamento na Amazônia: Quem tem razão-o INPE ou a NASA?’, Ciência Hoje 16 (96), 6-8.Google Scholar
  44. Fearnside, P. M.: 1993b, ‘Deforestation in Brazilian Amazonia: The Effect of Population and Land Tenure’, Ambio 22, 537-545.Google Scholar
  45. Fearnside, P. M.: 1993c, ‘Biomass of Brazil's Amazonian Forests: Reply to Brown and Lugo Revisited’, Interciencia 18, 5-7.Google Scholar
  46. Fearnside, P. M.: 1994, ‘Biomassa das Florestas Amazônicas Brasileiras’, in Anais do Seminário Emissão × Seqüestro de CO 2, Companhia Vale do Rio Doce (CVRD), Rio de Janeiro, Brazil, pp. 95-124.Google Scholar
  47. Fearnside, P. M.: 1995a, ‘Potential Impacts of Climatic Change on Natural Forests and Forestry in Brazilian Amazonia’, For. Ecol. Manage. 78, 51-70.Google Scholar
  48. Fearnside, P. M.: 1995b, ‘Hydroelectric Dams in the Brazilian Amazon as Sources of “Greenhouse” Gases', Environ. Conserv. 22, 7-19.Google Scholar
  49. Fearnside, P. M.: 1996a, ‘Amazonia and Global Warming: Annual Balance of Greenhouse Gas Emissions from Land-Use Change in Brazil's Amazon Region’, in Levine, J. S. (ed.), Biomass Burning and Global Change. Volume 2: Biomass Burning in South America, Southeast Asia and Temperate and Boreal Ecosystems and the Oil Fires of Kuwait, MIT Press, Cambridge, MA, pp. 606-617.Google Scholar
  50. Fearnside, P. M.: 1996b, ‘Amazonian Deforestation and Global Warming: Carbon Stocks in Vegetation Replacing Brazil's Amazon Forest’, For. Ecol. Manage. 80, 21-34.Google Scholar
  51. Fearnside, P. M.: 1997a, ‘Greenhouse Gases from Deforestation in Brazilian Amazonia: Net Committed Emissions’, Clim. Change 35, 321-360.Google Scholar
  52. Fearnside, P. M.: 1997b, ‘Environmental Services as a Strategy for Sustainable Development in Rural Amazonia’, Ecol. Econ. 29, 53-70.Google Scholar
  53. Fearnside, P. M.: 1998, ‘Plantation Forestry in Brazil: Projections to 2050’, Biomass Bioenergy 15, 437-450.Google Scholar
  54. Fearnside, P. M.: 1999, ‘Greenhouse Gas Emissions from Land-Use Change in Brazil's Amazon Region’, Adv. Soil Sci., in press.Google Scholar
  55. Fearnside, P. M. and Ferraz, J.: 1995, ‘A Conservation Gap Analysis of Brazil's Amazonian Vegetation’, Conserv. Biol. 9, 1134-1147.Google Scholar
  56. Fearnside, P. M. and Rankin, J. M.: 1985, ‘Jari Revisited: Changes and the Outlook for Sustainability in Amazonia's Largest Silvicultural Estate’, Interciencia 10, 121-129.Google Scholar
  57. Fearnside, P. M. and Guimarães, W. M.: 1996, ‘Carbon Uptake by Secondary Forests in Brazilian Amazonia’, For. Ecol. Manage. 80, 35-46.Google Scholar
  58. Fearnside, P. M. and Barbosa, R. I.: 1998, ‘Soil Carbon Changes from Conversion of Forest to Pasture in Brazilian Amazonia’, For. Ecol. Manage. 108, 147-166.Google Scholar
  59. Fearnside, P. M., Leal Filho, N., and Fernandes, F. M.: 1993, ‘Rainforest Burning and the Global Carbon Budget: Biomass, Combustion Efficiency and Charcoal Formation in the Brazilian Amazon’, J. Geophys. Res. (Atmos.) 98 (D9), 16,733-16,743.Google Scholar
  60. Fearnside, P. M., Sayer, J. A., Cleary, D., Bierregaard Jr., R. O., and Prance, G.: 1996, ‘Brazil’, in Harcourt, C. and Sayer, J. A. (eds.), The Conservation Atlas of Tropical Forests: The Americas, Simon and Schuster, New York, pp. 229-248.Google Scholar
  61. Fearnside, P. M., Graça, P. M. L. A., Leal Filho, N., Rodrigues, F. J. A., and Robinson, J. M.: 1999, ‘Tropical Forest Burning in Brazilian Amazonia: Measurements of Biomass Loading, Burning Efficiency and Charcoal Formation at Altamira, Para’, For. Ecol. Manage. 123, 65-79.Google Scholar
  62. Flint, E. P. and Richards, J. F.: 1993, ‘Trends in Carbon Content of Vegetation in South and Southeast Asia Associated with Changes in Land Use’, in Dale, V. H. (ed.), Effects of Land-Use Change on Atmospheric CO 2 Concentrations: South and Southeast Asia as a Case Study, Springer-Verlag, Heidelberg, Germany, pp. 201-299.Google Scholar
  63. Fundação S.O.S. Mata Atlântica: 1992, Mata Atlântica, Fundação S.O.S. Mata Atlântica, São Paulo, Brazil.Google Scholar
  64. Graça, P. M. L. A.: 1997, ConteÚdo de Carbono na Biomassa Florestal da Amazônia e Alterações após à Queima, Masters Thesis in Forest Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, São Paulo, Brazil, p. 105.Google Scholar
  65. Graça, P. M. L. A., Fearnside, P. M., and Cerri, C. C.: 1999, ‘Burning of Amazonian Forest in Ariquemes, Rondônia, Brazil: Biomass, Charcoal Formation and Burning Efficiency’, For. Ecol. Manage. 120, 179-191.Google Scholar
  66. Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., and Gash, J.: 1995, ‘Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993’, Science 270, 778-780.Google Scholar
  67. Grace, J., Malhi, Y., Higuchi, N., and Meir, P.: 2000, ‘Productivity and Carbon Fluxes of Tropical Rain Forests’, in Mooney, H. A., Roy, J., and Saugler, B. (eds.), Global Terrestrial Productivity: Past, Present, and Future, Academic Press, London, in press.Google Scholar
  68. Guimarães, W. M.: 1993, Liberação de Carbono e Mudanças nos Estoques dos Nutrientes Contidos na Biomassa Aérea e no Solo Resultante de Queimadas de Florestas Secundárias em Áreas de Pastagens Abandonadas, em Altamira, Pará, Masters thesis in ecology, Instituto Nacional de Pesquisas da Amazônia/Fundação Universidade do Amazonas (INPA/FUA), Manaus, Brazil, p. 69.Google Scholar
  69. Hao, W. M. and Ward, D. E.: 1993, ‘Methane Production from Global Biomass Burning’, J. Geophys. Res. (Atmos.) 98 (D11), 20,657-20,661.Google Scholar
  70. Hao, W. M., Liu, M. H., and Crutzen, P. J.: 1990, ‘Estimates of Annual and Regional Releases of CO2 and Other Trace Gases to the Atmosphere from Fires in the Tropics; Based on the FAO Statistics for the Period 1975-1980’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota, Springer-Verlag, Heidelberg, pp. 440-462.Google Scholar
  71. Higuchi, N. and Carvalho Jr., J. A.: 1994, ‘Fitomassa e ConteÚdo de Carbono de Espécies Arbóreas da Amazônia’, in Anais do Seminário Emissão × Seqüestro de CO 2, Companhia Vale do Rio Doce (CVRD), Rio de Janeiro, Brazil, pp. 125-153.Google Scholar
  72. Higuchi, N., dos Santos, J., Ribeiro, R. J., de Freitas, J. V., Vieira, G., Cöic, A., and Minette, L. J.: 1997, ‘Crescimento e Incremento de uma Floresta Amazônica de Terra-Firme Manejada Experimentalmente’, in Higuchi, N., Ferraz, J. B. S., Antony, L., Luizão, F., Luizão, R., Biot, Y., Hunter, I., Proctor, J., and Ross, S. (eds.), Bionte: Biomassa e Nutrientes Florestais, Relatório Final, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil, pp. 87-132.Google Scholar
  73. Houghton, R. A.: 1991, ‘Tropical Deforestation and Atmospheric Carbon Dioxide’, Clim. Change 19, 99-118.Google Scholar
  74. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the Carbon Content of the Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere’, Ecol. Monogr. 53, 235-262.Google Scholar
  75. Houghton, R. A., Boone, R. D., Fruchi, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., and Myers, N.: 1987, ‘The Flux of Carbon from Terrestrial Ecosystems to the Atmosphere in 1980 Due to Changes in Land Use: Geographic Distribution of the Global Flux’, Tellus 39B, 122-139.Google Scholar
  76. Houghton, J. T., Meira Filho, L. G., Bruce, J., Hoesung, Lee, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.): 1995, Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, U.K., p. 339.Google Scholar
  77. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K., p. 572.Google Scholar
  78. Intergovernmental Panel on Climate Change (IPCC): 1995, Greenhouse Gas Inventory Reporting Instructions, IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, Bracknell, U.K., 3 Vols.Google Scholar
  79. Intergovernmental Panel on Climate Change (IPCC): 1996, Climate Change 1995: The Science of Climate Change. Summary for Policy Makers, Cambridge University Press, Cambridge, U.K., p. 56.Google Scholar
  80. Joshi, V.: 1991, ‘Biomass Burning in India’, in Levine, J. S. (ed.) Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Boston, MA, pp. 185-193.Google Scholar
  81. Kauffman, J. B., Cummings, D. L., and Ward, D. E.: 1994, ‘Relationships of Fire, Biomass and Nutrient Dynamics along a Vegetation Gradient in the Brazilian Cerrado’, J. Ecol. 82, 519-531.Google Scholar
  82. Kauffman, J. B., Cummings, D. L., Ward, D. E., and Babbitt, R.: 1995, ‘Fire in the Brazilian Amazon: Biomass, Nutrient Pools, and Losses in Slashed Primary Forest’, Oecologia 104, 397-408.Google Scholar
  83. Kaufman, Y. J., Setzer, A. W., Justice, C., Tucker, C. J., Pereira, M. G., and Fung, I.: 1990, ‘Remote Sensing of Biomass Burning in the Tropics’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer-Verlag, Heidelberg, pp. 371-399.Google Scholar
  84. Keller, M., Jacob, D. J., Wofsy, S. C., and Harriss, R. C.: 1991, ‘Effects of Tropical Deforestation on Global and Regional Atmospheric Chemistry’, Clim. Change 19, 139-158.Google Scholar
  85. Klink, C. A., Macedo, R. H., and Mueller, C. C.: 1994, Cerrado: Processo de Ocupação e Implicações para a Conservação e Utilização da sua Diversidade Biológica, World Wide Fund for Nature (WWF-Brasil), Brasilia, Brazil.Google Scholar
  86. Kuhlbusch, T. A. J. and Crutzen, P. J.: 1995, ‘Toward a Global Estimate of Black Carbon in Residues of Vegetation Fires Representing a Sink of Atmospheric CO2 and a Source of O2’, Global Biogeochem. Cycles 9, 491-501.Google Scholar
  87. Laurance, W. F., Laurance, S. G., Ferreira, L. V., Rankin-de-Merona, J. M., Gascon, C., and Lovejoy, T. E.: 1997, ‘Biomass Collapse in Amazonian Forest Fragments’, Science 278, 1117-1118.Google Scholar
  88. Laurance, W. F., Laurance, S. G., and Delamonica, P.: 1998, ‘Tropical Forest Fragmentation and Greenhouse Gas Emissions’, For. Ecol. Manage. 110, 173-180.Google Scholar
  89. Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A., and Scott, S.: 1998, ‘Carbon Dioxide Transfer over a Central Amazonian Rain Forest’, J. Geophys. Res. (Atmos.) 103 (D24), 31,593-31,612.Google Scholar
  90. Malingreau, J. P., Stephens, G., and Fellows, L.: 1985, ‘Remote Sensing of Forest Fires: Kalimantan and North Borneo in 1982-1983’, Ambio 14, 314-321.Google Scholar
  91. Martius, C., Wassmann, R., Thein, U., Bandeira, A. G., Rennenberg, H., Junk, W., and Seiler, W.: 1993, ‘Methane Emission from Wood-Feeding Termites in Amazonia’, Chemosphere 26, 623-632.Google Scholar
  92. Martius, C., Fearnside, P. M., Bandeira, A. G., and Wassmann, R.: 1996, ‘Deforestation and Methane Release from Termites in Amazonia’, Chemosphere 33, 517-536.Google Scholar
  93. McNeely, J., Sayers, J., Anspach, P., Ng, F., Singhapant, S., Nuevo, C., and Van der Heide, J.: 1992, ‘Shifting Cultivation’, in Collins, N. M., Sayer, J. A., and Whitmore, T. C. (eds.), The Conservation Atlas of Tropical Forests: Asia and the Pacific, MacMillan, London, pp. 30-35.Google Scholar
  94. Meggers, B. J.: 1994, ‘Archeological Evidence for the Impact of Mega-Niño Events on Amazonia During the Past Two Millennia’, Clim. Change 28, 321-338.Google Scholar
  95. Moran, E. F., Brondizio, E., Mausel, P., and Wo, Y.: 1994, ‘Integrating Amazonian Vegetation, Land-Use, and Satellite Data’, BioScience 44, 329-338.Google Scholar
  96. Myers, N.: 1991, ‘Tropical Forests: Present Status and Future Outlook’, Clim. Change 19, 3-32.Google Scholar
  97. Nye, P. H. and Greenland, D. J.: 1960, The Soil under Shifting Cultivation, Technical Communication No. 51, Commonwealth Agricultural Bureaux of Soils, Harpenden, U.K., p. 156.Google Scholar
  98. Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., NÚñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.: 1998, ‘Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots’, Science 282, 439-442.Google Scholar
  99. Robinson, J. M.: 1989, ‘On Uncertainty in the Computation of Global Emissions from Biomass Burning’, Clim. Change 14, 243-262.Google Scholar
  100. Rudel, T. K. and Horowitz, B.: 1993, Tropical Deforestation: Small Farmers and Land Clearing in the Ecuadorian Amazon, Columbia University Press, New York, p. 234.Google Scholar
  101. Runyan, C.: 1998, ‘Indonesia Ablaze’, World Watch 11, 6.Google Scholar
  102. Ruthenberg, H.: 1971, Farming Systems in the Tropics, Clarendon Press, Oxford, U.K., p. 313.Google Scholar
  103. Schimel, D. and 75 others: 1996, ‘Radiative Forcing of Climate Change’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 65-131.Google Scholar
  104. Schroeder, P. E. and Winjum, J. K.: 1995, ‘Assessing Brazil's Carbon Budget: I. Biotic Carbon Pools’, For. Ecol. Manage. 75, 77-86.Google Scholar
  105. Seiler, W. and Crutzen, P. J.: 1980, ‘Estimates of Gross and Net Fluxes of Carbon between the Biosphere and the Atmosphere from Biomass Burning’, Clim. Change 2, 207-247.Google Scholar
  106. Shine, K. P., Derwent, R. G., Wuebbles, D. J., and Morcrette, J-J.: 1990, ‘Radiative Forcing of Climate’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., pp. 41-68.Google Scholar
  107. Silva-Forsberg, M. C. and Fearnside, P. M.: 1997, ‘Brazilian Amazonian Caboclo Agriculture: Effect of Fallow Period on Maize Yield’, For. Ecol. Manage. 97, 283-291.Google Scholar
  108. Sombroek, W. G., Nachtergaele, F., and Hebel, A.: 1993, ‘Amounts, Dynamics and Sequestering of Carbon in Tropical and Subtropical Soils’, Ambio 22, 417-426.Google Scholar
  109. Stone, T. A., Schlesinger, P., Houghton, R. A., and Woodwell, G. M.: 1994, ‘A Map of the Vegetation of South America Based on Satellite Imagery’, Photogrammetric Engineer. Remote Sens. 60, 541-551.Google Scholar
  110. Tian, H., Mellilo, J. M., Kicklighter, D.W., McGuire, A. D., Helfrich III, J. V. K., Moore III, B., and Vörösmarty, C.: 1998, ‘Effect of Interanual Climate Variability on Carbon Storage in Amazonian Ecosystems’, Nature 396, 664-667.Google Scholar
  111. Uhl, C. and Buschbacher, R.: 1985, ‘A Disturbing Synergism between Cattle-Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon’, Biotropica 17, 265-268.Google Scholar
  112. Uhl, C. and Kauffman, J. B.: 1990, ‘Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon’, Ecology 71, 437-449.Google Scholar
  113. Uhl, C., Buschbacher, R., and Serrão, E. A. S.: 1988, ‘Abandoned Pastures in Eastern Amazonia. I. Patterns of Plant Succession’, J. Ecol. 76, 663-681.Google Scholar
  114. Uhlig, J., Hall, C. A. S., and Nyo, T.: 1993, ‘Changing Patterns of Shifting Cultivation in Selected Countries in Southeast Asia and Their Effect on the Global Carbon Cycles’, in Dale, V. H. (ed.), Effects of Land-Use Change on Atmospheric CO 2 Concentrations: South and Southeast Asia as a Case Study, Springer-Verlag, Heidelberg, pp. 145-200.Google Scholar
  115. UNESCO (United Nations Educational Scientific and Cultural Organization)/UNEP (United Nations Environmental Programme/FAO (Food and Agriculture Organization of the United Nations): 1978, Tropical Forest Ecosystems: A State of Knowledge Report, UNESCO/UNEP, Paris, p. 683.Google Scholar
  116. Vermeer, D. E.: 1970, ‘Population Pressure and Crop Rotational Changes among the Tiv of Nigeria’, Ann. Assoc. Amer. Geogr. 60, 299-314.Google Scholar
  117. Ward, D. E.: 1986, ‘Field Scale Measurements of Emission from Open Fires’, Technical Paper Presented at the Defense Nuclear Agency Global Effects Review, Defense Nuclear Agency, Washington, D.C.Google Scholar
  118. Watson, R. T., Rodhe, H., Oeschger, H., and Siegenthaler, U.: 1990, ‘Greenhouse Gases and Aerosols’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., pp. 1-40.Google Scholar
  119. Watson, R. T., Meira Filho, L. G., Sanhueza, E., and Janetos, A.: 1992, ‘Greenhouse Gases: Sources and Sinks’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., pp. 25-46.Google Scholar
  120. Wong, C. S.: 1978, ‘Atmospheric Input of Carbon Dioxide from Burning Wood’, Science 200, 197-200.Google Scholar
  121. Yearsley, J. R. and Lettenmaier, D. P.: 1987, ‘Model Complexity and Data Worth: An Assessment of Changes in the Global Carbon Budget’, Ecol. Model. 39, 201-226.Google Scholar
  122. Zinke, P. J., Sabhasri, S., and Kunstadter, P.: 1978, ‘Soil Fertility Aspects of the Lua' Forest Fallow System of Shifting Cultivation’, in Kunstadter, P., Chapman, E. C., and Sabhasri, S. (eds.), Farmers in the Forest: Economic Development and Marginal Agriculture in Northern Thailand, East-West Center, Honolulu, Hawaii, pp. 134-159.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Philip M. Fearnside
    • 1
  1. 1.National Institute for Research in the Amazon (INPA)Manaus, AmazonasBrazil

Personalised recommendations