International Journal of Primatology

, Volume 21, Issue 4, pp 649–669 | Cite as

Locomotion and Posture During Terminal Branch Feeding

  • Donald C. Dunbar
  • Gyani L. Badam
Article

Abstract

We investigated locomotor and postural behavior during terminal branch feeding in order to gain a better understanding of the motor capabilities of primates. We videotaped wild, juvenile bonnet macaques (Macaca radiata) in India as they fed on flower nectar in a simal tree (Bombax malabaricum). Kinematic analysis revealed that they select specific support surfaces and movements that, for their body design and postures, maximize lateral stability and minimize the chances of falling. These choices are made even though the distance and duration of travel to a selected target are frequently increased. Our discussion focuses on particular concepts of how primates contend with balance problems arboreally, potential reasons for changes in footfall patterns, and how the tail contributes to arboreal locomotion and posture. We concluded that balance problems due to the ratio of body size to branch size are usually avoided, at least among juvenile bonnet macaques, by placing the hands and feet on branches extending laterally from the central support branch and not on the central branch itself. The lateral branches permit a wide base of support, which increases lateral stability. Second, juvenile bonnet macaques have a striking ability to rapidly and repeatedly adapt their gait patterns to changing substrate design with minimal interruption to overall progression. Third, primate tails that are not morphologically specialized for prehension nevertheless have important prehensile and sensory functions in arboreal locomotion and posture.

arboreal behaviors substrate use footfall patterns tail use balance Macaca radiata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anemone, R. L. (1993). The functional anatomy of the hip and thigh in primates. In Gebo, D. L. (ed.), Postcranial Adaptation in Nonhuman Primates, Northern Illinois University Press, De Kalb, pp. 150–174.Google Scholar
  2. Ankel, F. (1962). Vergleichende Untersuchungen über die Skelettmorphologie des Greifschwanzes sü damerikanischer Affen (Platyrrhina). Z. Morphol. Oekol. Tiere 52: 131–170.Google Scholar
  3. Avis, V. (1962). Brachiation: The crucial issue for man' ancestry. Southwest. J. Anthropol. 18: 119–148.Google Scholar
  4. Cant, J. G. H. (1986). Locomotion and feeding postures of spider and howling monkeys: Field study and evolutionary interpretations. Folia Primatol. 46: 1–14.Google Scholar
  5. Carpenter, C. R., and Durham, N. M. (1969). A preliminary description of suspensory behavior in non-human primates. In Hofer, H. O. (ed.), Proc. 2nd Intl. Congr. Primatol. 2: 147–154.Google Scholar
  6. Cartmill, M. (1985). Climbing. In Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D.B. (eds.), Functional Vertebrate Morphology, Belknap-Harvard University Press, Cambridge, pp. 73–88.Google Scholar
  7. Dagg, A. I. (1977). Running, Walking, and Jumping: The Science of Locomotion. Crane, Russak and Company, Inc., New York.Google Scholar
  8. Demes, B., Larson, S. G., Stern, J. T., Jungers, W. L., Biknevicius, A. R., and Schmitt, D. (1994). The kinetics of primate quadrupedalism: “Hindlimb drive” reconsidered. J. Hum. Evol. 26: 353–374.Google Scholar
  9. Dunbar, D. C. (1988). Aerial maneuvers of leaping lemurs: The physics of whole-body rotations while airborne. Am. J. Primatol. 16: 291–303.Google Scholar
  10. Dunbar, D. C. (1989). Locomotor behavior of rhesus macaques (Macaca mulatta) on Cayo Santiago. Puerto Rico Health Sci. J. 8: 79–85.Google Scholar
  11. Dunbar, D. C. (1994). The influence of segmental movements and design on whole-body rotations during the airborne phase of primate leaps. Z. Morph. Anthrop. 80: 109–124.Google Scholar
  12. Dunbar, D. C., and Badam, G. L. (1994). Locomotor mechanics of terminal branch feeding. J. Morphol. 220: 343 (Abstract).Google Scholar
  13. Dunbar, D. C., and Badam, G. L. (1998). Development of posture and locomotion in free-ranging primates. Neurosci. Biobehav. Rev. 22: 541–546.Google Scholar
  14. Fleagle, J. (1977a). Locomotor behavior and muscular anatomy of sympatric Malaysian leafmonkeys (Presbytis obscura and Presbytis melalophos). Am. J. Phys. Anthropol. 46: 297–307.Google Scholar
  15. Fleagle, J. (1977b). Locomotor behavior and skeletal anatomy of sympatric Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophos). Yrbk. Phys. Anthorpol. 20: 440–453.Google Scholar
  16. Fleagle, J. G. (1978). Locomotion, posture, and habitat utilization in two sympatric, Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophos). In Montgomery, G. G. (ed.), Ecology of Arboreal Foliavores, Smithsonian Institution Press, Washington, DC, 243–251.Google Scholar
  17. Fleagle, J. G., and Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am. J. Phys. Anthropol. 52: 301–314.Google Scholar
  18. Fulton, J. F. (1940). Experimental studies on the functions of the frontal lobes in monkeys, chimpanzees, and man. In Baitsell, G. A. (ed.), Science in Progress (2nd Series), Yale University Press, New Haven, pp. 55–77.Google Scholar
  19. Gál, J.M. (1993a). Mammalian spinal biomechanics. I. Static and dynamic mechanical properties of intact intervertebral joints. J. Exp. Biol. 174: 247–280.Google Scholar
  20. Gál, J.M. (1993b). Mammalian spinal biomechanics. II. Intervertebral lesion experiments and mechanisms of bending resistance. J. Exp. Biol. 174: 281–297.Google Scholar
  21. Gebo, D. L. (1993). Functional morphology of the foot in primates. In Gebo, D. L. (ed.), Postcranial Adaptation in Nonhuman Primates, Northern Illinois University Press, De Kalb, pp. 175–196.Google Scholar
  22. Gebo, D. L., and Chapman, C. A. (1995). Positional behavior in five sympatric Old World Monkeys. Am. J. Phys. Anthropol. 97: 49–76.Google Scholar
  23. Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding. J. Mammal. 53: 198–201.Google Scholar
  24. Grand, T. I. (1976). Differences in terrestrial velocity in Macaca and Presbytis. Am. J. Phys. Anthropol. 45: 101–108.Google Scholar
  25. Grand, T. I. (1977). Body weight: Its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons. Am. J. Phys. Anthropol. 47: 211–240.Google Scholar
  26. Grand, T. I. (1978). Adaptation of tissue and limb segments to facilitate moving and feeding in arboreal foliavores. In Montgomery, G. G. (ed.), Ecology of Arboreal Foliavores, Smithsonian Institution Press, Washington, DC, pp. 231–241.Google Scholar
  27. Grand, T. I. (1984). Motion economy within the canopy: four strategies for mobility. In Rodman, P. S., and Cant, J. G. H. (eds.), Adaptations to Foraging in Nonhuman Primates, Columbia University Press, New York, pp. 54–72.Google Scholar
  28. Gray, J. (1944). Studies in the mechanics of the tetrapod skeleton. J. Exp. Biol. 20: 88–116.Google Scholar
  29. Hildebrand, M. (1966). Analysis of symmetrical gaits of tetrapods. Folia Biotheoret. 13: 9–22.Google Scholar
  30. Hildebrand, M. (1967). Symmetrical gaits of primates. Am. J. Phys. Anthropol. 26: 18–27.Google Scholar
  31. Howell, A. B. (1944). Speed in Animals: Their Specialization for Running and Leaping. Republished 1965, Hafner Publishing Company, New York.Google Scholar
  32. Iwamoto, M., and Tomita, M. (1966). On the movement order of four limbs while walking and body weight distribution to fore and hind limbs while standing on all fours in monkeys. Zinruigaku Zassi 74: 228–231 (English Summary).Google Scholar
  33. Kimura, T., Okada, M., and Ishida, H. (1979). Kinesiological characteristics of primate walking: Its significance in human walking. In Morbeck, M.E., Preuschoft, H., and Gomberg, N. (eds.), Environment, Behavior, and Morphology: Dynamic Interactions in Primates, Gustav Fischer, New York, pp. 297–311.Google Scholar
  34. Larson, S. G. (1993). Functional morphology of the shoulder in primates. In Gebo, D. L. (ed.), Postcranial Adaptation in Nonhuman Primates, Northern Illinois University Press, De Kalb, pp. 45–69.Google Scholar
  35. Larson, S. G. (1998). Unique aspects of quadrupedal locomotion in nonhuman primates. In Strasser, E., Fleagle, J., Rosenberger, A., and McHenry, H. (eds.), Primate Locomotion: Recent Advances, Plenum Press, New York, pp. 157–173.Google Scholar
  36. McGraw, W. S. (1996). Cercopithecid locomotion, support use, and support availability in the Tai Forest, Ivory Coast. Am. J. Phys. Anthropol. 100: 507–522.Google Scholar
  37. McGraw, W. S. (1998). Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. Am. J. Phys. Anthropol. 105: 493–510.Google Scholar
  38. Meldrum, D. J. (1998). Tail-assisted hind limb suspension as a transitional behavior in the evolution of the platyrrhine prehensile tail. In Strasser, E., Fleagle, J., Rosenberger, A., and McHenry, H. (eds.), Primate Locomotion: Recent Advances, Plenum Press, New York, pp. 145–156.Google Scholar
  39. Meldrum, D. J., Dagosto, M., and White, J. (1997). Hindlimb suspension and hind foot reversal in Varicia variegata and other arboreal mammals. Am. J. Phys. Anthropol. 103: 85–102.Google Scholar
  40. Muybridge, E. (1887). Animals in Motion. Republished 1957, Dover Publications, Inc., New York.Google Scholar
  41. Napier, J. R. (1967). Evolutionary aspects of primate locomotion. Am. J. Phys. Anthropol. 27: 333–341.Google Scholar
  42. Napier, J. R., and Napier, P. H. (1967). A Handbook of Living Primates, Academic Press, New York.Google Scholar
  43. Ripley, S. (1967). The leaping of langurs: A problem in the study of locomotor adaptation. Am. J. Phys. Anthropol. 26: 149–170.Google Scholar
  44. Rodman, P. S. (1979). Skeletal differentiation in Macaca fascicularis and Macaca nemestrina in relation to arboreal and terrestrial quadrupedalism. Am. J. Phys. Anthropol. 51: 51–62.Google Scholar
  45. Rollinson, J., and Martin, R. D. (1981). Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. In Day, M. H. (ed.), Vertebrate Locomotion. Symp. Zool. Soc. Lond. 48: 377–427.Google Scholar
  46. Rose, M. D. (1973). Quadrupedalism in primates. Primates 14: 337–357.Google Scholar
  47. Rose, M. D. (1974). Postural adaptations in New and Old World monkeys. In Jenkins, F. A. (ed.), Primate Locomotion, Academic Press, New York, pp. 201–222.Google Scholar
  48. Rose, M. D. (1993). Functional anatomy of the elbow and forearm in primates. In Gebo, D. L. (ed.), Postcranial Adaptation in Nonhuman Primates, Northern Illinois University Press, De Kalb, pp. 70–95.Google Scholar
  49. Schmitt, D. (1998). Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World monkeys. In Strasser, E., Fleagle, J., Rosenberger, A., and McHenry, H. (eds.), Primate Locomotion: Recent Advances, Plenum Press, New York, pp. 175–200.Google Scholar
  50. Shapiro, L. (1993). Functional morphology of the vertebral column in primates. In Gebo, D. L. (ed.), Postcranial Adaptation in Nonhuman Primates, Northern Illinois University Press, De Kalb, pp. 121–149.Google Scholar
  51. Stern, J. T. (1971). Functional myology of the hip and thigh of cebid monkeys and its implications for the evolution of erect posture. Bibl. Primatol. 14: 1–318.Google Scholar
  52. Tuttle, R. (1972). Relative mass of cheiridial muscles in catarrhine primates. In Tuttle, R. (ed.), The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago, pp. 262–291.Google Scholar
  53. Vilensky, J. A. (1987). Locomotor behavior and control in human and non-human primates: Comparisons with cats and dogs. Neurosci. Biobehav. Rev. 11: 263–274.Google Scholar
  54. Vilensky, J. A. (1989). Primate quadrupedalism: How and why does it differ from that of typical quadrupeds. Brain Behav Evol. 34: 357–364.Google Scholar
  55. Vilensky, J. A., and Larson, S. G. (1989). Primate locomotion: Utilization and control of symmetrical gaits. Ann. Rev. Anthropol. 18: 17–35.Google Scholar
  56. Vilensky, J. A., and Patrick, M. C. (1985). Gait characteristics of two squirrel monkeys, with emphasis on relationships with speed and neural control. Am. J. Phys. Anthropol. 68: 429–444.Google Scholar
  57. Vilensky, J. A., and O'Connor, B. L. (1997). Stepping in humans with complete spinal cord transection: A phylogenetic evaluation. Motor Control 1: 248–292.Google Scholar
  58. Vilensky, J. A., Libii, J. N., and Moore, A. M. (1991). Trot-gallop gait transitions in quadrupeds. Phys. Behav. 50: 835–842.Google Scholar
  59. Wilson, D. R. (1972). Tail reduction in Macaca. In Tuttle, R. (ed.), The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago, pp. 241–261.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Donald C. Dunbar
    • 1
    • 2
  • Gyani L. Badam
    • 1
    • 3
  1. 1.Department of Anatomy and Caribbean Primate Research Center, School of MedicineUniversity of Puerto RicoSan JuanUSA (D.C.D.)
  2. 2.Post-Graduate and Research InstituteDeccan CollegePuneIndia (G.L.B.)
  3. 3.Post-Graduate and Research InstituteDeccan CollegePuneIndia (G.L.B.)

Personalised recommendations