Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 3, pp 277–284

Human NM23/Nucleoside Diphosphate Kinase Regulates Gene Expression through DNA Binding to Nuclease-Hypersensitive Transcriptional Elements

  • Edith H. Postel
  • Steven J. Berberich
  • John W. Rooney
  • David M. Kaetzel
Article

Abstract

NM23-H2/NDP kinase B has been identified as a sequence-specific DNA-binding protein withaffinity for a nuclease-hypersensitive element of the c-MYC gene promoter (Postel et al.,1993). The ability of Nm23-H2 to activate c-MYC transcription in vitro and in vivo via thesame element demonstrates the biological significance of this interaction. Mutational analyseshave identified Arg34, Asn69 and Lys135 as critical for DNA binding, but not required forthe NDP kinase reaction. However, the catalytically important His118 residue is dispensiblefor sequence-specific DNA binding, suggesting that sequence-specific DNA recognition andphosphoryl transfer are independent properties. Nm23-H2 also has an activity that cleavesDNA site-specifically, involving a covalent protein-DNA complex. In a DNAsequence-dependent manner, Nm23-H2 recognizes additional target genes for activation, includingmyeloperoxidase, CD11b, and CCR5, all involved in myeloid-specific differentiation. Moreover,both NM23-H1 and Nm23-H2 bind to nuclease hypersensitive elements in the platelet-derivedgrowth factor PDGF-A gene promoter sequence-specifically, correlating with either positiveor negative transcriptional regulation. These data support a model in which NM23/NDP kinasemodulates gene expression through DNA binding and subsequent structural transactions.

NM23 PuF transcription c-MYC nuclease-hypersensitive PDGF differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agou, F., Raveh, S., Mesnildrey, S., and Véron, M. (1999). J. Biol. Chem. 274, 19630-19638.Google Scholar
  2. Arcinas, M., and Boxer, L. M. (1994). Oncogene 9, 2699-2706.Google Scholar
  3. Austin, G. E., Zhao, W.-G., Zhang, W., Austin, E. D., Findley, H. W., and Murtagh, J. J., Jr. (1995). Leukemia 9, 848-857.Google Scholar
  4. Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T., Potter, H., Lenoir, G., and Leder, P. (1983). Cell 34, 779-787.Google Scholar
  5. Berberich, S. J., and Postel, E. H. (1995). Oncogene 10, 2343-2347.Google Scholar
  6. Boles, C., and Hogan, M. (1987). Biochemistry 26, 367-376.Google Scholar
  7. Cooney, M., Czernuszewicz, G., Postel, E. H., Flint, S. J., and Hogan, M. E. (1988). Science 242, 456-459.Google Scholar
  8. Facchini, L. M., and Penn, L. Z. (1998). FASEB 12, 633-651.Google Scholar
  9. Gilles, A. M., Presecan, E., Vonica, A., and Lascu, I. (1991). J. Biol. Chem. 266, 8784-8789.Google Scholar
  10. Gordon, S. (1995). BioEssays 17, 977-986.Google Scholar
  11. Hailat, N., Keim, D. R., Melhem, R. F., Zhu, X, Eckerskorn, C., Brodeur, G. M., Reynolds, C. P., Seeger, R. C., Lottspeich, F., Strahler, J. R., and Hanash, S. M. (1991). J. Clin. Invest. 88, 341-345.Google Scholar
  12. Hickstein, D. D., Baker, D. M., Gollahon, K. A., and Back, A. L. (1992). Proc. Natl. Acad. Sci. USA 89, 2105-2109.Google Scholar
  13. Hildebrandt, M., Lacombe, M.-L., Mesnildrey, S., and Véron, M. (1995). Nucleic Acids Res. 23, 3858-3864.Google Scholar
  14. Ji, L., Arcinas, M., and Boxer, L. M. (1995). J. Biol. Chem. 270, 13392-13398.Google Scholar
  15. Kaetzel, D. M., Jr., Maul, R. S., Liu, B., Bonthron, D., Fenstermaker, R. A., and Coyne, D. W. (1994). Biochem. J. 301, 321-327.Google Scholar
  16. Liu, B., Maul, R. S., and Kaetzel, D. M., Jr. (1996). J. Biol. Chem. 271, 26281-26290.Google Scholar
  17. Liu, B., Pedigo, N. G., Zhang, H., Drake, P., Postel, E. H., and Kaetzel, D. M. (1999). Proc. 3rd Intern. Congr. Genet. Biochem. Physiol. nm23/Nucleoside Diphosphate Kinase, University of Bordeaux 2, France, 20–22 September 1999, Absh. T15.Google Scholar
  18. Michelotti, E. F., Sanford, S., Freije, J. M. P., MacDonald, N. J., Steeg, P. S., and Levens, D. (1997). J. Biol. Chem. 272, 22526-22530.Google Scholar
  19. Morera, S., Lacombe, M., Xu, Y., LeBras, G., and Janin, J. (1995). Structure 3, 1307-1314.Google Scholar
  20. Mirkin, S. M., and Frank-Kamenetskii, M. D. (1994). Annu. Rev. Biophys. Biomol. Struct. 23, 541-576.Google Scholar
  21. Moriuchi, H., Moriuchi, M., and Fauci, A. S. (1997). J. Immunol. 159, 5441-5449.Google Scholar
  22. Postel, E. H. (1998). Intern. J. Biochem. Cell Biol. 30, 1291-1295.Google Scholar
  23. Postel, E. H., and Ferrone, C. A. (1994). J. Biol. Chem. 269, 8627-8630.Google Scholar
  24. Postel, E. H., Mango, S. E., and Flint, S. J. (1989). Mol. Cell. Biol. 9, 5123-5133.Google Scholar
  25. Postel, E. H., Flint, S. J., Kessler, D. J., and Hogan, M. E. (1991). Proc. Natl. Acad. Sci. USA 88, 8227-8231.Google Scholar
  26. Postel, E. H., Berberich, S. J., Flint, S. J., and Ferrone, C. A. (1993). Science 261, 478-480.Google Scholar
  27. Postel, E. H., and Weiss, V. H., Beneken, J., and Kirtane, A. (1996). Proc. Natl. Acad. Sci. USA 93, 6892-6897.Google Scholar
  28. Postel, E. H. (1999). J. Biol. Chem. 274, 22821-22829.Google Scholar
  29. Prendergast, G. C. (1997). Oncogenes Transcript. Reg. 1, 1-28Google Scholar
  30. Rooney, J. W., Postel, E. H., and Calame, K. (1999). Proc. 3rd Intern. Congr. Genet. Biochem. Physiol. nm23/Nucleoside Diphosphate Kinase, University of Bordeaux 2, France, 20–22 September 1999, Absh. P15.Google Scholar
  31. Shelley, C. S., and Arnaout, M. A. (1991). Proc. Natl. Acad. Sci. USA 88, 10525-10529.Google Scholar
  32. Silver, B. J. (1992). BioFactors 86, 217-227.Google Scholar
  33. Soyfer, V. N., and Potaman, V. N. (1996). Triple-Helical Nucleic Acids, Springer-Verlag, New York.Google Scholar
  34. Stahl, J. A., Leone, A., Rosengard, A. M., Porter, L., King, C. R., and Steeg, P. S. (1991). Cancer Res. 51, 445-449.Google Scholar
  35. Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. R., Talmadge, J. E., Liotta, L. A., and Sobel, M. E. (1988). J. Natl. Cancer Inst. 80, 200-204.Google Scholar
  36. Ulyanov, N. B., Bishop, K. D., Ivanov, V.I., and James, T. L. (1994). Nucleic Acids Res. 22, 4242-4249.Google Scholar
  37. von Hippel, P. H. (1994). Science 263, 769-770.Google Scholar
  38. Wang, Z.-Y., Masaharu, N., Qiu, Q.-Q., Takimoto, Y., and Deuel, T. F. (1994). Nucleic Acids Res. 22, 457-464.Google Scholar
  39. Webb, P. A., Perisic, O., Mendola, C. E., Backer, J. M., and Williams, R. L. (1995). J. Mol. Biol. 251, 574-587.Google Scholar
  40. Wells, R. D. (1988). J. Biol. Chem. 263, 1095-1098.Google Scholar
  41. Zimmerman, S., Baumann, A., Jaekel, K., Marbach, I., Engleberg, D., and Frohnmeyer, H. (1999). J. Biol. Chem. 274, 17017-17024.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Edith H. Postel
    • 1
  • Steven J. Berberich
    • 2
  • John W. Rooney
    • 3
  • David M. Kaetzel
    • 4
  1. 1.Department of Molecular BiologyPrinceton UniversityPrinceton
  2. 2.Department of Biochemistry and Molecular BiologyWright State UniversityDayton
  3. 3.Department of MicrobiologyColumbia University College of Physicians & SurgeonsNew York
  4. 4.Department of Pharmacology, College of Medicine, Chandler Medical CenterUniversity of KentuckyLexington

Personalised recommendations