Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 4, pp 391–400 | Cite as

Partial Assembly of the Yeast Mitochondrial ATP Synthase 1

  • David M. Mueller
Article

Abstract

The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.

ATP synthase F1-ATPase Saccharomyces cerevisiae petite mutants epistasis mitochondrion pet mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ackerman, S. H. and Tzagoloff, A. (1990a). J. Biol. Chem. 265, 9952–9959.Google Scholar
  2. Ackerman, S. H. and Tzagoloff, A. (1990b). Proc. Natl. Acad. Sci. USA 87, 4986–4990.Google Scholar
  3. Aggeler, R. and Capaldi, R. A. (1996). J. Biol. Chem. 271, 13888–13891.Google Scholar
  4. Aggeler, R., Chicas-Cruz, K., Cai, S.-X., Keana, J. F. W., and Capaldi, R. A. (1992). Biochemistry 31, 2956–2961.Google Scholar
  5. Aggeler, R., Ogilvie, I., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 19621–19624.Google Scholar
  6. Altamura, N., Capitanio, N., Bonnefoy, N., Papa, S., and Dujardin, G. (1996). FEBS Lett. 382, 111–115.Google Scholar
  7. Arlt, H., Tauer, R., Feldmann, H., Neupert, W., and Langer, T. (1996). Cell 85, 875–885.Google Scholar
  8. Arnold, I., Bauer, M. F., Brunner, M., Neupert, W., and Stuart, R. A. (1997). FEBS Lett. 411, 195–200.Google Scholar
  9. Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998). EMBO J. 17, 7170–7178.Google Scholar
  10. Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1999). J. Biol. Chem. 274, 36–40.Google Scholar
  11. Arselin, G., Gander, J.-C., Guerin, B., and Velours, J. (1991). J. Biol. Chem. 266, 723–727.Google Scholar
  12. Arselin, G., Vaillier, J., Graves, P. V., and Velours, J. (1996). J. Biol. Chem. 271, 20284–20290.Google Scholar
  13. Boss, O., Samec, S., Paoloni-Giacobino, A., Rossier, C., Dulloo, A., Seydoux, J., Muzzin, P., and Giacobino, J. P. (1997). FEBS Lett. 408, 39–42.Google Scholar
  14. Boyer, P. D. (1989). FASEB J. 3, 2164–2178.Google Scholar
  15. Boyer, P. D., Cross, R. L., and Momsen, W. (1973). Proc. Natl. Acad. Sci. USA 70, 2837–2839.Google Scholar
  16. Brusilow, W. S. (1987). J. Bacteriol. 169, 4984–4990.Google Scholar
  17. Bulygin, V. V., Duncan, T. M., and Cross, R. L. (1998). J. Biol. Chem. 273, 31765–31769.Google Scholar
  18. Capaldi, R. A., Aggeler, R., Gogol, E. P., and Wilkens, S. (1992). J. Bioenerg. Biomembr. 24, 435–439.Google Scholar
  19. Duncan, T. M., Bulygin, V.V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995). Proc. Natl. Acad. Sci. USA 92, 10964–10968.Google Scholar
  20. Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H. (1997). Nat. Genet. 15, 269–272.Google Scholar
  21. Gromet-Elhanan, Z. (1992). J. Bioenerg. Biomembr. 24, 447–452.Google Scholar
  22. Gromet-Elhanan, Z. and Avital, S. (1992). Biochim. Biophys. Acta Bio-Energetics 1102, 379–385.Google Scholar
  23. Hashimoto, T., Yoshida, Y., and Tagawa, K. (1984). J. Biochem. (Tokyo) 95, 131–136.Google Scholar
  24. Hashimoto, T., Yoshida, Y., and Tagawa, K. (1990). J. Bioenerg. Biomembr. 22, 27–38.Google Scholar
  25. Ichikawa, N., Yoshida, Y., Hashimoto, T., Ogasawara, N., Yoshi kawa, H., Imamoto, F., and Tagawa, K. (1990). J. Biol. Chem. 265, 6274–6278.Google Scholar
  26. Kagawa, Y., Ohta, S., and Otawara-Hamamoto, Y. (1989). FEBS Lett. 249, 67–69.Google Scholar
  27. Kanazawa, H., Hama, M., Rosen, B. P., and Futai, M. (1985). Arch. Biochem. Biophys. 241, 364–370.Google Scholar
  28. Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K., Jr., and Yoshida, M. (1998). J. Biol. Chem. 273, 19375–19377.Google Scholar
  29. Klionsky, D. J., Brusilow, W. S., and Simoni, R. D. (1984). J. Bacteriol. 160, 1055–1060.Google Scholar
  30. Lai-Zhang, J., Xiao, Y., and Mueller, D. M. (1999). EMBO. J. 18, 58–64.Google Scholar
  31. Lee, C. and Ernster, L. (1968). Eur. J. Biochem. 3, 391–400.Google Scholar
  32. Lee, C. P., Ernster, L., and Chance, B. (1969). Eur. J. Biochem. 8, 153–163.Google Scholar
  33. Lemaire, C., Hamel, P., Velours, J., and Dujardin, G. (2000). J. Biol. Chem. 275, 23471–23475.Google Scholar
  34. Lin, C. S. and Klingenberg, M. (1980). FEBS Lett. 113, 299–303.Google Scholar
  35. Miki, J., Takeyama, M., Noumi, T., Kanazawa, H., Maeda, M., and Futai, M. (1986). Arch. Biochem. Biophys. 251, 458–464.Google Scholar
  36. Minkov, I. B., Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979). Biochem. Biophys. Res. Commun. 89, 1300–1306.Google Scholar
  37. Miwa, K. and Yoshida, M. (1989). Proc. Natl. Acad. Sci. USA 86, 6484–6487.Google Scholar
  38. Neupert, W. (1997). Annu. Rev. Biochem. 66, 863–917.Google Scholar
  39. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature (London) 386, 299–302.Google Scholar
  40. Norais, N., Prome, D., and Velours, J. (1991). J. Biol. Chem. 266, 16541–16549.Google Scholar
  41. Orriss, G. L., Runswick, M. J., Collinson, I. R., Miroux, B., Fearnley, I. M., Skehel, J. M., and Walker, J. E. (1996). Biochemistry J. 314, 695–700.Google Scholar
  42. Patrie, W. J. and McCarty, R. E. (1984). J. Biol. Chem. 259, 11121–11128.Google Scholar
  43. Paumard, P., Vaillier, J., Napias, C., Arselin, G., Brethes, D., Graves, P. V., and Velours, J. (2000). Biochemistry 39, 4199–4205.Google Scholar
  44. Penin, F., Deleage, G., Gagliardi, D., Roux, B., and Gautheron, D. C. (1990). Biochemistry 29, 9358–9364.Google Scholar
  45. Rep, M., van Dijl, J. M., Suda, K., Schatz, G., Grivell, L. A., and Suzuki, C. K. (1996). Science 274, 103–106.Google Scholar
  46. Rosen, B. P. (1973). J. Bacteriol. 116, 1124–1129.Google Scholar
  47. Roudeau, S., Spannagel, C., Vaillier, J., Arselin, G., Graves, P. V. and Velours, J. (1999). J. Bioenerg. Biomembr. 31, 85–94.Google Scholar
  48. Sabbert, D., Engelbrecht, S., and Junge, W. (1996). Nature (London) 381, 623–625.Google Scholar
  49. Schulenberg, B., Wellmer, F., Lill, H., Junge, W., and Engelbrecht, S. (1997). Eur. J. Biochem. 249, 134–141.Google Scholar
  50. Senior, A. E. (1988). Physiol. Rev. 68, 177–231.Google Scholar
  51. Spannagel, C., Vaillier, J., Arselin, G., Graves, P. V., and Velours, J. (1997). Eur. J. Biochem. 247, 1111–1117.Google Scholar
  52. Stock, D., Leslie, A. G., and Walker, J. E. (1999). Science 286, 1700–1705.Google Scholar
  53. Tang, C. L. and Capaldi, R. A. (1996). J. Biol. Chem. 271, 3018–3024.Google Scholar
  54. Tzagoloff, A., Yue, J., Jang, J., and Paul, M. F. (1994). J. Biol. Chem. 269, 26144–26151.Google Scholar
  55. Uh, M., Jones, D., and Mueller, D. M. (1990). J. Biol. Chem. 265, 19047–19052.Google Scholar
  56. Vaillier, J., Arselin, G., Graves, P. V., Camougrand, N., and Velours, J. (1999). J. Biol. Chem. 274, 543–548.Google Scholar
  57. Vasilyeva, E. A., Minkov, I. A., Fitin, A. F., and Vinogradov, A. D. (1982). Biochemistry J. 202, 15–23.Google Scholar
  58. Walker, J. E., Fearnley, I. M., Gay, N. J., Gibson, B. W., Northrop, F. D., Powell, S. J., Runswick, M. J., Saraste, M., and Tybulewicz, V. L. (1985). J. Molec. Biol. 184, 677–701.Google Scholar
  59. Walker, J. E., Lutter, R., Dupuis, A., and Runswick, M. J. (1991). Biochemistry 30, 5369–5378.Google Scholar
  60. Wang, Z. G. and Ackerman, S. H. (1996). J. Biol. Chem. 271, 4887–4894.Google Scholar
  61. Wang, Z. G. and Ackerman, S. H. (2000). J. Biol. Chem. 275, 5767–5772.Google Scholar
  62. Wilkens, S. and Capaldi, R. A. (1998). J. Biol. Chem. 273, 26645–26651.Google Scholar
  63. Xiao, Y., Metzl, M., and Mueller, D. M. (2000). J. Biol. Chem. 275, 6963–6968.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • David M. Mueller
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Chicago Medical SchoolNorth Chicago

Personalised recommendations