Journal of Chemical Ecology

, Volume 26, Issue 10, pp 2245–2257 | Cite as

Harvester Ants Utilize Cuticular Hydrocarbons in Nestmate Recognition

  • Diane Wagner
  • Madeleine Tissot
  • William Cuevas
  • Deborah M. Gordon


Cuticular hydrocarbons appear to play a role in ant nestmate recognition, but few studies have tested this hypothesis experimentally with purified hydrocarbon extracts. We exposed captive colonies of the harvester ant Pogonomyrmex barbatus to small glass blocks coated with whole cuticular lipid extracts and the purified hydrocarbon portion of extracts from nestmate and nonnestmate workers. As an estimate of agonistic behavior, we measured the proportion of ants in contact with blocks that flared their mandibles. Blocks coated with cuticular extracts from nonnestmates were contacted by more workers in one of two experiments and elicited higher levels of aggression in both experiments than blocks bearing extracts from nestmates. The cuticular hydrocarbon fraction of extracts alone was sufficient to elicit agonistic behavior toward nonnestmates. The results demonstrate that harvester ants can perceive differences in cuticular hydrocarbon composition, and can use those differences in nestmate recognition.

Cuticular hydrocarbons Formicidae Nestmate recognition Pogonomyrmex barbatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonavita-Cougourdan, A., Lement, J. L., and Lange, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagus scop. J. Entomol. Sci. 22:1-10.Google Scholar
  2. Brown, M. J. F., and Gordon, D. M. 1997. Individual specialisation and encounters between harvester ant colonies. Behaviour 134:849-866.Google Scholar
  3. Dahbi, A., Cerda, X., Hefetz, A., and Lenoir, A. 1996. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Catagluphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22:2173-2186.Google Scholar
  4. Espelie, K. E., and Bernays, E. A. 1989. Diet-related differences in the cuticular lipids of Manduca sexta larvae. J. Chem. Ecol. 15:2003-2017.Google Scholar
  5. Gamboa, G. J., Grudzien, T. A., Espelie, K. E., and Bura, E. A. 1996. Kin recognition pheromones in social wasps: Combining chemical and behavioural evidence. Anim. Behav. 51:625-629.Google Scholar
  6. Gordon, D. M. 1986. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34:1402-1419.Google Scholar
  7. Gordon, D. M., and Kulig, A. W. 1996. Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecology 77:2393-2409.Google Scholar
  8. Gordon, D. M., and Mehdiabadi, N. J. 1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370-377.Google Scholar
  9. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179-226, in W. Stanley-Samuelson and D. R. Nelson (ed.). Insect Lipids: Chemistry, Biochemistry and Biology, University of Nebraska Press, Lincoln.Google Scholar
  10. Jackson, L. L., Armold, M. T., and Regnier, R. E. 1974. Cuticular lipids of adult fleshflies, Sarcophaga bullata. Insect Biochem. 4:369-379.Google Scholar
  11. Jutsum, A. R., Saunders, T. S., and Cherrett, J. M. 1979. Intraspecific aggression in the leafcuting ant Acromyrmex octospinosus. Anim. Behav. 27:839-844.Google Scholar
  12. Lahav, S., Soroker, V., and Hefetz, A. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246-249.Google Scholar
  13. Le Moli, F., and Mori, Mori 1990. Laboratory experiments on environmental sources of nestmate and nonnestmate discrimination in three species of Formica ants (Hymenoptera: Formicidae). Psyche 97:147-169.Google Scholar
  14. Liu, Z., Yamane, S., Wang, Q., and Yamamoto, H. 1998. Nestmate recognition and temporal modulation in the patterns of cuticular hydrocarbons in natural colonies of Japanese carpenter ants, Camponotus japonicus Mayr (Hymenoptera: Formicidae). J. Ethol. 16:57-65.Google Scholar
  15. Lockey, K. H. 1988. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. 89B:595-645.Google Scholar
  16. Nelson, D. R., Fatland, C. L., Howard, R. W., Mcdaniel, C. A., and Blomquist, G. J. 1980. Re-analysis of the cuticular methylalkanes of Solenopsis invicta and S. richteri. Insect Biochem. 10:409-418.Google Scholar
  17. Nowbahari, E., Lenoir, A., ClÉment, J. L., Lange, C., BagnÈres, A. G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63-73.Google Scholar
  18. Nowbahari, M., and Lenoir, A. 1984. Le fermeture des sociétés de la fourmi Cataglyphis cursor: Relations avec la distance géographique, pp. 457-461, in A. De Haro and X. Espadaler (eds.). Processus d'acquisition précoce. Les communications. Universitat Autonoma de Barcelona, Barcelona.Google Scholar
  19. Obin, M. S. 1986. Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): Effect of environment and role of cuticular hydrocarbons. J. Chem. Ecol. 12:1965-1975.Google Scholar
  20. Page, M., Nelson, L. J., Haverty, M. I., and Blomquist, G. J. 1990. Cuticular hydrocarbons of eight species of North American cone beetles, Conophthorus Hopkins. J. Chem. Ecol. 16:1173-1198.Google Scholar
  21. Panel on Discriminant Analysis and Clustering. 1989. Discriminant analysis and clustering. Stat. Sci. 4:34-69.Google Scholar
  22. Provost, E., RiviÈre, G., Roux, M., Morgan, E. D., and BagnÈres, A. G. 1993. Change in the chemical signature of the ant Leptothorax lichtensteini Bondroit with time. Insect Biochem. Mol. Biol. 23:945-957.Google Scholar
  23. Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394-405.Google Scholar
  24. Singer, T. L., and Espelie, K. E. 1992. Social wasps use nest paper hydrocarbons for nestmate recognition. Anim. Behav. 44:63-68.Google Scholar
  25. Singer, T. L., and Espelie, K. E. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera, Vespidae). J. Insect Behav. 9:857-870.Google Scholar
  26. Smith, B. H., and Breed, M. D. 1995. The chemical basis for nestmate recognition and mate discrimination in insects, pp. 287-317, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman & Hall, New York.Google Scholar
  27. Sokal, R. R., and Rohlf, F. J. 1994. Biometry, 3rd ed. W. H. Freeman & Co., New York.Google Scholar
  28. Thomas, M. L., Parry, L. J., Allan, R. A., and Elgar, M. A. 1999. Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87-92.Google Scholar
  29. Vander Meer, R. K., and Morel, L. 1998. Nestmate recognition in ants, pp. 79-103, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (ed.). Pheromone Communication in Social Insects. Westview Press, Boulder, Colorado.Google Scholar
  30. Vander Meer, R. K., Saliwanchik, D., and Lavine, B. 1989. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: Implications for nestmate recognition. J. Chem. Ecol. 15:2115-2125.Google Scholar
  31. Wagner, D., Brown, M. J. F., Broun, P., Cuevas, W., Moses, L. E., Chao, D. L., and Gordon, D. M. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24:2021-2037.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Diane Wagner
    • 1
  • Madeleine Tissot
    • 2
  • William Cuevas
    • 3
  • Deborah M. Gordon
    • 2
  1. 1.Department of Biological SciencesUniversity of NevadaLas Vegas
  2. 2.Department of Biological SciencesStanford UniversityStanford
  3. 3.Genencor International, Inc.Palo Alto

Personalised recommendations