Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 1, pp 15–25 | Cite as

Mitochondrial Calcium Signaling Driven by the IP3 Receptor

  • György Hajnóczky
  • György Csordás
  • Rajeshwari Krishnamurthy
  • Gábor Szalai


Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.

Mitochondria endoplasmic reticulum Ca2+ IP3 local signaling energy metabolism apoptosis necrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreyev, A. Y., Fahy, B., and Fiskum, G. (1998). FEBS Lett. 439, 373-376.Google Scholar
  2. Babcock, D. F., and Hille, B. (1998). Current Opinions Neurobiol. 8, 398-404.Google Scholar
  3. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B., and Hille, B. (1997). J. Cell Biol. 136, 833-44.Google Scholar
  4. Baffy, G., Miyashita, T., Williamson, J. R., and Reed, J. C. (1993). J. Biol. Chem. 268, 6511-6519.Google Scholar
  5. Balaban, R. S., Dennis, V. W., and Mandel, L. J. (1981). Amer. J. Physiol. 240, F337-42.Google Scholar
  6. Bernardi, P. (1996). Biochim. Biophys. Acta 1275, 5-9.Google Scholar
  7. Bernardi, P., and Petronilli, V. (1996). J. Bioenerg. Biomembr. 28, 131-8.Google Scholar
  8. Berridge, M. J. (1993). Nature (London) 361, 315-325.Google Scholar
  9. Berridge, M. J. (1997). Nature (London) 386, 759-760.Google Scholar
  10. Bootman, M. D., and Berridge, M. J. (1996). Current Biol. 6, 855-865.Google Scholar
  11. Bootman, M. D., Berridge, M. J., and Lipp, P. (1997). Cell 91, 367-373.Google Scholar
  12. Borst, J. G., and Sakmann, B. (1996). Nature (London) 383, 431-434.Google Scholar
  13. Budd, S. L., and Nicholls, D. G. (1996). J. Neurochem. 67, 2282-2291.Google Scholar
  14. Clapham, D. E. (1995). Cell 80, 259-268.Google Scholar
  15. Cobbold, P. H., and Cuthbertson, K. S. (1990). Seminars Cell Biol. 1, 311-321.Google Scholar
  16. Cooper, R. L., Winslow, J. L., Govind, C. K., and Atwood, H. L. (1996). J. Neurophysiol. 75, 2451-2466.Google Scholar
  17. Csordás, G., Thomas, A. P., and Hajnóczky, G. (1999). EMBO J. 18, 96-108.Google Scholar
  18. del Castillo, J., and Katz, B. (1954). J. Physiol. 124, 560-573.Google Scholar
  19. Denton, R. M., and McCormack, J. G. (1980). FEBS Lett. 119, 1-8.Google Scholar
  20. Di Lisa, F., Blank, P. S., Colonna, R., Gambassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G. (1995). J. Physiol. (London) 486, 1-13.Google Scholar
  21. Donnadieu, E., and Bourguignon, L. Y. (1996). Cell Calcium 1, 53-61.Google Scholar
  22. Duchen, M. R. (1992). Biochem. J. 283, 41-50.Google Scholar
  23. Duchen, M. R., Peuchen, S., and Nowicky, A. (1993). Biomedical. Res. 14 (Suppl. 2), 139-146.Google Scholar
  24. Dunlap, K., Luebke, J. I., and Turner, T. J. (1995). Trends Neurosci. 18, 89-98.Google Scholar
  25. Golovina, V. A., and Blaustein, M. P. (1997). Science 275, 1643-1648.Google Scholar
  26. Green, D., and Kroemer, G. (1998). Trends Cell Biol. 8, 267-271.Google Scholar
  27. Green, D. R., and Reed, J. C. (1998). Science 281, 1309-1312.Google Scholar
  28. Gunter, T. E., and Pfeiffer, D. R. (1990). Amer. J. Physiol. 258, C755-86.Google Scholar
  29. Gunter, T. E., Gunter, K. K., Sheu, S. S., and Gavin, C. E. (1994). Amer. J. Physiol. 267, C313-C339.Google Scholar
  30. Gunter, T. E., Buntinas, L., Sparagna, G. C., and Gunter, K. K. (1998). Biochim. Biophys. Acta 1366, 5-15.Google Scholar
  31. Hajnóczky, G., Robb-Gaspers, L. D., Seitz, M. B., and Thomas, A. P. (1995). Cell 82, 415-424.Google Scholar
  32. Hajnóczky, G., Hager, R., and Thomas, A. P. (1999). J. Biol. Chem. 274, 14157-62.Google Scholar
  33. Halestrap, A. P., and Davidson, A. M. (1990). Biochem. J. 268, 153-160.Google Scholar
  34. Hansford, R. G. (1980). Current Topics Bioenerg. 10, 217-277.Google Scholar
  35. Hehl, S., Golard, A., and Hille, B. (1996). Cell Calcium 20, 515-24.Google Scholar
  36. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D., and Korsmeyer, S. J. (1990). Nature (London) 348, 334-336.Google Scholar
  37. Hoek, J. B., Walajtys-Rode, E., and Wang, X. (1997). Mol. Cell Biochem. 174, 173-179.Google Scholar
  38. Hoth, M., Fanger, C. M., and Lewis, R. S. (1997). J. Cell Biol. 137, 633-648.Google Scholar
  39. Horne, J. H., and Meyer, T. (1997). Science 276, 1690-1693.Google Scholar
  40. Huser, J., Rechenmacher, C. E., and Blatter, L. A. (1998). Biophys. J. 74, 2129-37.Google Scholar
  41. Ichas, F., and Mazat, J. P. (1998). Biochim. Biophys. Acta 1366, 33-50.Google Scholar
  42. Ichas, F., Jouaville, L. S., and Mazat, J. P. (1997). Cell 89, 1145-1153.Google Scholar
  43. Ichas, F., Ouhabi, R., Sidash, S. S., and Mazat, J. P. (1999). Biophys. J. 76, A235.Google Scholar
  44. Jou, M. J., Peng, T. I., and Sheu, S. S. (1996). J. Physiol. (London) 497, 299-308.Google Scholar
  45. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P., and Lechleiter, J. D. (1995). Nature (London) 377, 438-441.Google Scholar
  46. Jouaville, L. S., Ichas, F., and Mazat J. P. (1998). Mol. Cell. Biochem. 184, 371-6.Google Scholar
  47. Katz, B. (1969). The Release of Neural Transmitter Substances, (Liverpool University Press), Liverpool.Google Scholar
  48. Kneen, M., Farinas, J., Li, Y., and Verkman, A. S. (1998). Biophys. J. 74, 1591-1599.Google Scholar
  49. Kroemer, G., Zamzami, N., and Susin, S. A. (1997). Immunol. Today 18:44-51.Google Scholar
  50. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998). Annu. Rev. Physiol. 60, 619-642.Google Scholar
  51. Kunz, W., and Bohme, G. (1969). Acta Biol. Med. Ger. 22, 643-51.Google Scholar
  52. Landolfi, B., Curci, S., Debellis, L., Pozzan, T., and Hofer, A. M. (1998). J. Cell Biol. 142, 1235-43.Google Scholar
  53. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B. (1998). Biochim. Biophys. Acta 1366, 177-196.Google Scholar
  54. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cell 94, 491-501.Google Scholar
  55. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G., and Tsien, R. Y. (1998). Proc. Natl. Acad. Sci. USA 95, 6803-6808.Google Scholar
  56. Loew, L. M., Tuft, R. A., Carrington, W., and Fay, F. S. (1993). Biophys. J. 65, 2396-2407.Google Scholar
  57. Loew, L. M., Carrington, W., Tuft, R. A., and Fay, F. S. (1994). Proc. Natl. Acad. Sci. USA 91, 12579-12583.Google Scholar
  58. Lopez-Lopez, J. R., Shacklock, P. S., Balke, C. W., and Wier, W. G. (1995). Science 268, 1042-1045.Google Scholar
  59. Lukacs, G. L., and Kapus, A. (1987). Biochem. J. 248, 609-613.Google Scholar
  60. Maeda, N., Niinobe, M., Inoue, Y., and Mikoshiba, K. (1989). Dev. Biol. 133, 67-76.Google Scholar
  61. Mannella, C. A., Buttle, K., Rath, B. K., and Marko, M. (1998). Biofactors 8, 225-8.Google Scholar
  62. Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G. (1998). Science 281, 2027-2031.Google Scholar
  63. McCormack, J. G., Halestrap, A. P., and Denton, R. M. (1990). Physiol. Rev. 70, 391-425.Google Scholar
  64. Mignery, G. A., Sudhof, T. C., Takei, K., and De Camilli, P. (1989). Nature (London) 342, 192-195.Google Scholar
  65. Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E., and Fiskum, G. (1996). Proc. Natl. Acad. Sci. USA 93, 9893-9898.Google Scholar
  66. Nicholls, D. G., and Budd, S. L. (1998a). Biochim. Biophys. Acta 1366, 97-112.Google Scholar
  67. Nicholls, D. G., and Budd, S. L. (1998b). Biofactors 8, 287-299.Google Scholar
  68. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993). Cell 74, 609-619.Google Scholar
  69. Parker, I., and Yao, Y. (1996). J. Physiol. (London) 491, 663-668.Google Scholar
  70. Parker, I., Choi, J., and Yao, Y. (1996). Cell Calcium 20, 105-121.Google Scholar
  71. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998). J. Biol. Chem. 273, 7770-7775.Google Scholar
  72. Petersen, O. H., Petersen, C. C., and Kasai, H. (1994). Annu. Rev. Physiol. 56, 297-319.Google Scholar
  73. Petit, P. X., Goubern, M., Diolez, P., Susin, S. A., Zamzami, N., and Kroemer, G. (1998). FEBS Lett. 426, 111-116.Google Scholar
  74. Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994). Physiol. Rev. 74, 595-636.Google Scholar
  75. Pralong, W. F., Hunyady, L., Varnai, P., Wollheim, C. B., and Spät, A. (1992). Proc. Natl. Acad Sci. USA 89, 132-136.Google Scholar
  76. Pralong, W. F., Spät, A., and Wollheim, C. B. (1994). J. Biol. Chem. 269, 27310-27314.Google Scholar
  77. Prentki, M., Glennon, M. C., Thomas, A. P., Morris, R. L., Matschinsky, F. M., and Corkey, B. E. (1988). J. Biol. Chem. 263, 11044-11047.Google Scholar
  78. Putney, J. W. Jr. (1998). Science 279, 191-192.Google Scholar
  79. Reber, B. F. X., and Schindelholz, B. (1996). Pflugers Arch. 432, 893-903.Google Scholar
  80. Reed, J. C. (1997). Cell 91, 559-562.Google Scholar
  81. Ricken, S., Leipziger, J., Greger, R., and Nitschke, R. J. (1998). Biol. Chem. 273, 34961-34969.Google Scholar
  82. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993). Science 262, 744-747.Google Scholar
  83. Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M., and Pozzan, T. (1994). J. Cell Biol. 126, 1183-1194.Google Scholar
  84. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T. (1995). Current Biol. 5, 635-642.Google Scholar
  85. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998). Science 280, 1763-1766.Google Scholar
  86. Robb-Gaspers, L. D., Rutter, G. A., Burnett, P., Hajnóczky, G., Denton, R. M., and Thomas, A. P. (1998a). Biochim. Biophys. Acta 1366, 17-32.Google Scholar
  87. Robb-Gaspers, L. D., Burnett, P., Rutter, G. A., Denton, R. M., Rizzuto, R., and Thomas, A. P. (1998b). EMBO J. 17, 4987-5000.Google Scholar
  88. Rohacs, T., Nagy, G., and Spät, A. (1997). Biochem. J. 322, 785-92.Google Scholar
  89. Rutter, G. A., Burnett, P., Rizzuto, R., Brini, M., Murgia, M., Pozzan, T., Tavare, J. M, and Denton, R. M. (1996). Proc. Natl. Acad. Sci. USA 93, 5489-5494.Google Scholar
  90. Satoh, T., Ross, C. A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S. H., and Meldolesi, J. (1990). J. Cell Biol. 111, 615-624.Google Scholar
  91. Scholz, R., Thurman, R. G., Williamson, J. R., Chance, B., and Bucher, T. J. (1969). Biol. Chem. 244, 2317-2324.Google Scholar
  92. Shore, G. C. and Tata, J. R. (1977). J. Cell Biol. 72, 714-725.Google Scholar
  93. Simpson, P. B., and Russell, J. T. (1996). J. Biol. Chem. 271, 33493-33501.Google Scholar
  94. Simpson, P. B., Mehotra, S., Lange, G. D., and Russell J. T. (1997). J. Biol. Chem. 272, 22654-22661.Google Scholar
  95. Skulachev, V. P. (1998). FEBS Lett. 423, 275-280.Google Scholar
  96. Sparagna, G. C., Gunter, K. K., Sheu, S. S., and Gunter, T. E. (1995). J. Biol. Chem. 270, 27510-27515.Google Scholar
  97. Thomas, A. P., Renard, D. C., and Rooney, T. A. (1991). Cell Calcium 12, 111-26.Google Scholar
  98. Thomas, A. P., Bird, G. S, Hajnóczky, G., Robb-Gaspers, L. D., and Putney, J. W. Jr. (1996). FASEB J. 10, 1505-1517.Google Scholar
  99. Tsien, Y. T., and Bacskai, B. J. (1995). In Handbook of Confocal Microscopy (Pawley, J. B. ed.), Plenum Press, New York, pp. 459-478.Google Scholar
  100. Yang, J. C., and Cortopassi, G. A. (1998). Free Radicals Biol. Med. 24, 624-631.Google Scholar
  101. Yao, Y., Choi, J., and Parker, I. (1995). J. Physiol. (London) 482, 533-553.Google Scholar
  102. Zoratti, M., and Szabo, I. (1995). Biochim. Biophys. Acta 1241, 139-76.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • György Hajnóczky
    • 1
  • György Csordás
    • 2
  • Rajeshwari Krishnamurthy
    • 2
  • Gábor Szalai
    • 2
  1. 1.Department of Pathology, Anatomy, and Cell BiologyThomas Jefferson UniversityPhiladelphia
  2. 2.Department of Pathology, Anatomy, and Cell BiologyThomas Jefferson UniversityPhiladelphia

Personalised recommendations