Biotechnology Letters

, Volume 21, Issue 10, pp 875–880 | Cite as

Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase

  • Pilar Reyes
  • Michael A. Pickard
  • Rafael Vazquez-Duhalt
Article

Abstract

Laccase from Coriolopsis gallica UAMH8260 was immobilized on activated agarose and tested for repeated decolorization of industrial dyes. Immobilized enzyme retained 85% of the initial activity after 10 cycles, and 70% after 3 months of intermittant use in the decolorization of Reactive Blue 198 dye. Free laccase decolorized 13 of 38 industrial dyes tested but, in the presence of 1 mM 1-hydroxybenzotriazole as a free radical mediator, the enzyme decolorized 26 of the 38 dyes increasing both the range and rate of decolorization. Immobilized laccase showed a higher thermal stability at 70 °C than free enzyme but no increased resistance to organic solvents.

dye immobilized enzyme laccase mediators textile wastewater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald F, Paice MG, Jurasek L (1990) Decolorization of Kraft bleachery effluent chromophores by Coriolus (Trametes) versicolor. Enzyme Microbiol. Techn. 12: 846–853.Google Scholar
  2. Arjmand M, Sandermann H (1985) Mineralization of chloraniline/lignin conjugates and of free chloranilines by white rot fungus Phanerochaete chrysosporium. J. Agric. Food Chem. 33: 1055–1060.Google Scholar
  3. Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of biodegradation and mineralization as methods formeasuring loss of selected polychlorinated biphenyl congeners in cultures of four white rot fungi. Appl. Env. Microbiol. 64: 2020–2025.Google Scholar
  4. Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degradation capabilities of Phanerochaete leavis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Env. Microbiol. 62: 1597–1603.Google Scholar
  5. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99–102.Google Scholar
  6. Brown DH, Hitz HR, Shafer L (1981) The assessment of the possible inhibitory effect of dyestuffs on aerobic wastewater bacteria. Experience with a screening test. Chemosphere 10: 245–261.Google Scholar
  7. Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Env. Microbiol. 61: 4374–4377.Google Scholar
  8. Chung K-T, Stevens E (1992) The reduction of azo dyes by the intestinal microflore. Crit. Rev. Microbiol. 18: 175–190.Google Scholar
  9. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Env. Microbiol. 56: 1114–1118.Google Scholar
  10. Damkus T, Schneider P, Bech L, Heinzkill M (1996) Coprinaceae laccases International Pat. WO96/06930A1 (March 7, 1996).Google Scholar
  11. Davis S, Burns RG (1992) Covalent immobilisation of laccase on activated carbon for phenolic effluent treatment. Appl. Microbiol. Biotechnol. 37: 474–479.Google Scholar
  12. EPA (US Environmental Protection Agency) (1996) Best Management Practices for Pollution Prevention in the Textile Industry, EPA, Office of Research and Development, U.S. EPA/625/R-96/004.Google Scholar
  13. Gorontzy T, Drzyga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit. Rev. Microbiol. 20: 265–284.Google Scholar
  14. Hutzinger O (1980) The Handbook of Environmental Chemistry, Vol. 3, Part A. Berlin, Heidelberg: Springer-Verlag, 188 pp.Google Scholar
  15. Johannes C, Majcherczyk A, Huttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediating substrate compounds. Appl. Microbiol. Biotechnol. 46: 313–317.Google Scholar
  16. Kirby N, McMullan G, Marchant R (1995) Decolourisation of an artificial textile effuent by Phanerochaete chrysosporium. Biotechnol. Lett. 178: 761–764.Google Scholar
  17. Kulkarni SV, Blackwell CD, Blackard AL, Stackhocese CW, Alexander MW (1985) Textile dyes and dyeing equipment, classification, properties and environmental aspects. US Environmental Protection Agency, Research Triangle Park, NC, EPA-600/2–85/010.Google Scholar
  18. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of cyclodiene pesticide Endosulfan. Appl. Environ. Microbiol. 62: 593–600.Google Scholar
  19. Luterek J, Gianfreda L, Wojtas-Wasilewska M, Cho NS, Rogalski J, Jaszek M, Malarczyk E, Staszczak M, Fink-Boots M, Leonowicz A (1998) Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52: 589–595.Google Scholar
  20. Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbiol. Technol. 22: 335–341.Google Scholar
  21. Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Env. Toxicol. Chem. 4: 45–50.Google Scholar
  22. Milstein O, Nicklas B, Huttermann A (1989) Oxidation of aromatic compounds in organic solvents with laccase from Trametes versicolor. Appl. Microbiol. Biotechnol. 31: 70–74.Google Scholar
  23. Milstein O, Huttermann A, Majcherczyk A, Schulze K (1993) Transformationof lignin-related compounds with laccase in organic solvents J. Biotechnol. 30: 37–47.Google Scholar
  24. Muñoz G, Gillén F, Martínez AT, Martínez MJ (1997) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Env. Microbiol. 63: 2166–2174.Google Scholar
  25. Ollikka P, Alhonmaki K, Leppanen V-M, Glumoff T, Raijola T, Suominen Y (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Env. Microbiol. 59: 4010–4016.Google Scholar
  26. Pagga U, Brown D (1986) The degradation of dyestuffs. Part II. Behavior of dyestuffs in aerobic biodegradation tests. Chemosphere 15: 479–491.Google Scholar
  27. Paszczynski A, Crawford RL (1991) Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem. Biophys. Res. Commun. 178: 1056–1063.Google Scholar
  28. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi, and oxidation by Coriolodopsis gallica UAMH 8260 laccase. Appl. Env. Microbiol. 65 (in press).Google Scholar
  29. Reid I, Paice MG (1994). Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Micobiol. Rev. 13: 369–375.Google Scholar
  30. Rodríguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from lignolytic fungi. Curr. Microbiol. 38: 27–32.Google Scholar
  31. Rogalski J, Dawidowicz A, Jozwik E, Leonowicz A (1999) Immobilization of laccase from Carrena unicolor on controlled porosity glass J. Mol. Catalysis B: Enzymatic 6: 29–39.Google Scholar
  32. Ruckenstein E, Wang X-B (1994) Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly(styrene-divinylbenzene) carrier and its application to the degrading of 2-chlorophenol. Biotechnol Bioeng. 44: 79–86.Google Scholar
  33. Sasek V, Volfova O, Erbanova P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol. Lett. 15: 521–526.Google Scholar
  34. Schliephake K, Lonegran GT (1996) Laccase variation during dye decolourisation in a 200 L packed-bed bioreactor. Biotechnol. Lett. 18: 881–886.Google Scholar
  35. Shin KS, Oh IK, Kim CJ (1997) Production and purification of Remazol Brilliant Blue R decolorization peroxidase from the culture filtrate of Pleurotus ostreatus. Appl. Env. Microbiol. 63: 1744–1748.Google Scholar
  36. Takada S, Naksamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl. Env. Microbiol. 62: 4323–4328.Google Scholar
  37. Vasdev K, Kulad RC, Saxena RK (1995) Decolorization of triphenylmethane dyes by the bird's nest fungus Cyathus bulleri. Curr. Microbiol. 30: 268–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Pilar Reyes
    • 1
  • Michael A. Pickard
    • 2
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de Biotecnologia-UNAMCuernavaca, MorelosMexico
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations