Journal of Chemical Ecology

, Volume 26, Issue 6, pp 1367–1382 | Cite as

Identification of Olfactory Stimulants for Anopheles gambiae from Human Sweat Samples

  • J. Meijerink
  • M. A. H. Braks
  • A. A. Brack
  • W. Adam
  • T. Dekker
  • M. A. Posthumus
  • T. A. Van Beek
  • J. J. A. Van Loon
Article

Abstract

The behavioral and electroantennogram (EAG) responses of female Anopheles gambiae mosquitoes to pooled samples of freshly collected human sweat and human sweat incubated for 42–52 hr were tested. No behavioral or EAG response was obtained to pooled fresh sweat samples, whereas incubated pooled sweat samples produced a behavioral as well as an EAG response. GC-MS analysis of the headspace composition of the fresh sweat revealed ethanol (15.1% of the total amount of volatiles trapped), acetic acid (10.9%), and 3-hydroxy-2-butanone (9.5%) as the most abundant compounds; a wide range of ethyl esters was present as well. None of the ethyl esters was detected in the headspace collections from incubated sweat, while the relative amounts of ethanol, acetic acid, and 3-hydroxy-2-butanone were strongly reduced. In the latter collections, indole (27.9%), 1-dodecanol (22.4%), and 3-methyl-1-butanol (10%) were present in high amounts, while they were absent or present in only minor amounts in the headspace collections from fresh sweat. Geranyl acetone (6%) and 6-methyl-5-hepten-2-one (1.9%) were relatively abundant in both the fresh and incubated headspace samples. EAG responses were observed in response to indole, 6-methyl-5-hepten-2-one, and geranyl acetone.

Anopheles gambiae behavior electroantennogram human sweat identification malaria mosquito indole geranyl acetone 6-methyl-5hepten-2-one 1-dodecanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Albone, E. S. 1984. Mammalian Semiochemistry: The Investigation of Chemical Signals between Mammals. Wiley, Chichester, UK, 360 pp.Google Scholar
  2. Andersen, J. F., and Metcalf, R. L. 1986. Identification of a volatile attractant for Diabrotica and Acalymma spp. from blossoms of Cucurbita maxima Duchesne. J. Chem. Ecol. 12:687–699.Google Scholar
  3. Bernier, U. R., Booth, M. M., and Yost, R. A. 1999. Analyses of human skin emanations by gas chromatography /mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Anal. Chem. 71:1–7.Google Scholar
  4. Braks, M. A. H., and Takken, W. 1999. Incubated human sweat but not fresh sweat attracts the malaria mosquito Anopheles gambiae sensu stricto. J. Chem. Ecol. 25:663–672.Google Scholar
  5. Braks, M. A. H., Cork, A., and Takken, W. 1997. Olfactometer studies on the attraction of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human sweat. Proc. Exp. Appl. Entomol. 8:99–104.Google Scholar
  6. Brown, A. W. A., Sarkaria, D. S., and Thompson, R. P. 1952. Studies of the responses of the female Aedes mosquito. Part I.—The search for attractant vapours. Bull. Entomol. Res. 42:105–114.Google Scholar
  7. Cork, A. 1994. Identification of electrophysiologically active compounds for New World screwworm, Cochliomyia hominivorax, in larval wound fluid. Med. Vet. Entomol. 8:151–159.Google Scholar
  8. Cork, A., and Park, K. C. 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10:269–276.Google Scholar
  9. CossÉ, A. A., and Baker, T. C. 1996. House flies and pig manure volatiles: Wind tunnel behavioral studies and electrophysiological evaluations. J. Agric. Entomol. 13:301–317.Google Scholar
  10. CossÉ, A. A., Todd, J. L., Millar, J. G., MartÍnez, L. A., and Baker, T. C. 1995. Electroantennographic and coupled gas chromatographic-electroantennographic responses of the Mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odor. J. Chem. Ecol. 21:1823–1836.Google Scholar
  11. Costantini, C., Gibson, G., Sagnon, N., Della Torre, A., Brady, J., and Coluzzi, M. 1996. Mosquito responses to carbon dioxide in a West African Sudan savanna village. Med. Vet. Entomol. 10:220–227.Google Scholar
  12. De Jong, R., and Knols, B. G. J. 1995. Olfactory responses of host-seeking Anopheles gambiae s.s. Giles (Diptera: Culicidae). Acta Trop. 59:333–335.Google Scholar
  13. Eiras, A. E., and Jepson, P. C. 1991. Host location by Aedes aegypti (Diptera: Culicidae): A wind tunnel study of chemical cues. Bull. Entomol. Res. 81:151–160.Google Scholar
  14. Eiras, A. E., and Jepson, P. C. 1994. Responses of female Aedes aegypti (Diptera: Culicidae) to host odors and convection currents using an olfactometer bioassay. Bull. Entomol. Res. 84:207–211.Google Scholar
  15. Ferreira, V., FernÁndez, P., PeÑa, C., Escudero, A., and Cacho, J. F. 1995. Investigation on the role played by fermentation esters in the aroma of young spanish wines by multivariate analysis. J. Sci. Food Agric. 67:381–392.Google Scholar
  16. Folk, G. E., Jr., and Semken, H. A., Jr. 1991. The evolution of sweat glands. Int. J. Biometeorol. 35:180–186.Google Scholar
  17. Gillies, M. T. 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): A review. Bull. Entomol. Res. 70:525–532.Google Scholar
  18. Haddow, A. J. 1942. The mosquito fauna and climate of native huts at Kisumu, Kenya. Bull. Entomol. Res. 33:91–142.Google Scholar
  19. Hammack, L. 1996. Corn volatiles as attractants for northern and western corn rootworm beetles (Coleoptera: Chrysomelidae: Diabrotica spp.). J. Chem. Ecol. 22:1237–1253.Google Scholar
  20. Holland, K. T. 1993. Nutrition of cutaneous resident microorganisms, pp. 33–72, in W. C. Noble (ed.). The Skin Microflora and Microbial Skin Disease. Cambridge University Press, Cambridge.Google Scholar
  21. Keegans, S. J., Billen, J., Morgan, E. D., and GÖkcen, O. A. 1993. Volatile glandular secretions of three species of New World army ants, Eciton burchelli, Labidus coecus, and Labidus praedator. J. Chem. Ecol. 19:2705–2719.Google Scholar
  22. Knols, B. G. J., and Meijerink, J. 1997. Odors influence mosquito behavior. Sci. Med. 4:56–63.Google Scholar
  23. Knols, B. G. J., Van Loon, J. J. A., Cork, A., Robinson, R. D., Adam, W., Meijerink, J., De Jong, R., and Takken, W. 1997. Behavioral and electrophysiological responses of the female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. Bull. Entomol. Res. 87:151–159.Google Scholar
  24. Lacher, V. 1971. Electrophysiological equipment for measuring the activity of single olfactory nerve cells on the antennae of mosquitoes. J. Econ. Entomol. 64:313–314.Google Scholar
  25. Laposata, M. 1997. Fatty acid ethyl esters: short-term and long-term serum markers of ethanol intake. Clin. Chem. 43:1527–1534.Google Scholar
  26. Mboera, L. E. G., Knols, B. G. J., Takken, W., and Della Torre, A. 1997. The response of Anopheles gambiae s.l. and An. funestus (Diptera: Culicidae) to tents baited with human odour or carbon dioxide in southeast Tanzania. Bull. Entomol. Res. 87:173–178.Google Scholar
  27. Meijerink, J., and Van Loon, J. J. A. 1999. Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. J. Insect Physiol. 45:365–373.Google Scholar
  28. Micha, S. G., Stammel, J., and HÖller, C. 1993. 6-Methyl-5-hepten-2-one, a putative sex and spacing pheromone of the aphid hyperparasitoid, Alloxysta victrix (Hymenoptera: Alloxystidae). Eur. J. Entomol. 90:439–442.Google Scholar
  29. Millar, J. C., Chaney, J. D., and Mulla, M. S. 1992. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J. Am. Mosq. Control Assoc. 8:11–17.Google Scholar
  30. Mulla, M. S., and Ridsdill-Smith, J. T. 1986. Chemical attractants tested against the Australian bush fly Musca vetustissima (Diptera: Muscidae). J. Chem. Ecol. 12:261–270.Google Scholar
  31. Mulla, M. S., Hwang, Y.-S., and Axelrod, H. 1977. Attractants for synanthropic flies: Chemical attractants for domestic flies. J. Econ. Entomol. 70:644–648.Google Scholar
  32. MÜller, W. 1968. Die Distanz-und Kontakt-Orientierung der Stechmücken (Aedes aegypti) (Wirts-findung, Stechverhalten und Blutmahlzeit). Z. Vergl. Physiol. 58:241–303.Google Scholar
  33. Nicolaides, N. 1974. Skin lipids: their biochemical uniqueness. Science 186:19–26.Google Scholar
  34. Noble, W. C., and Somerville, D. A. 1974. Microbiology of Human Skin. W. B. Saunders Company, London.Google Scholar
  35. Parker, A. H. 1949. Stimuli involved in the attraction of Aedes aegypti I. to man. Bull. Entomol. Res. 39:387–397.Google Scholar
  36. Perry, T. L., Hansen, S., Diamond, S., Bullis, B., Mok, C., and Melancon, S. B. 1970. Volatile fatty acids in normal human physiological fluids. Clin. Chim. Acta 29:369–374.Google Scholar
  37. Preti, G., Clark, L., Cowart, B. J., Feldman, R. S., Lowry, L. D., Weber, E., and Young, I. M. 1992. Non-oral etiologies of oral malodor and altered chemosensation. J. Periodontol. 63:790–796.Google Scholar
  38. Price, G. D., Smith, N., and Carlson, D. A. 1979. The attraction of female mosquitoes (Anopheles quadrimaculatus Say) to stored human emanations in conjunction with adjusted levels of relative humidity, temperature, and carbon dioxide. J. Chem. Ecol. 5:383–395.Google Scholar
  39. TakÁcs, S., Gries, G., and Gries, R. 1997. Semiochemical-mediated location of host habitat by Apanteles carpatus (say) (Hymenoptera: Braconidae), a parasitoid of clothes moth larvae. J. Chem. Ecol. 23:459–472.Google Scholar
  40. Takken, W. 1991. The role of olfaction in host-seeking of mosquitoes: A review. Insect Sci. Appl. 12:287–295.Google Scholar
  41. Takken, W., Dekker, T., and Wijnholds, Y. G. 1997. Odor-mediated flight behavior of Anopheles gambiae Giles sensu stricto and An. stephensi Liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J. Insect Behav. 10:395–407.Google Scholar
  42. Thompson, R. P., and Brown, A. W. A. 1955. The attractiveness of human sweat to mosquitoes and the role of carbon dioxide. Mosq. News 15:80–84.Google Scholar
  43. Willis, R. E. 1947. The olfactory responses of female mosquitoes. J. Econ. Entomol. 40:769–778.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • J. Meijerink
    • 1
  • M. A. H. Braks
    • 1
  • A. A. Brack
    • 1
  • W. Adam
    • 1
  • T. Dekker
    • 2
  • M. A. Posthumus
    • 3
  • T. A. Van Beek
    • 3
  • J. J. A. Van Loon
    • 1
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.Department of EntomologyUniversity of CaliforniaRiverside
  3. 3.Laboratory of Organic ChemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations