Climatic Change

, Volume 42, Issue 4, pp 663–675

Northern Hemisphere Temperature Variability for the Past Three Centuries: Tree-Ring and Model Estimates

  • Rosanne D'Arrigo
  • Gordon Jacoby
  • Melissa Free
  • Alan Robock
Article

Abstract

We compare Northern Hemisphere energy-balance-model temperature calculations to an annual temperature reconstruction based on 20 tree-ring width records from latitudinal and elevational treeline sites in northern North America, Scandinavia, Siberia and Mongolia for the past three centuries. The energy-balance model uses three primary forcings; solar, volcanic, and anthropogenic trace gas and aerosol variations. Several different parameterizations of the forcings are compared. The best agreement (r = 0.8) is found when the annual reconstruction is compared to a version of the model using (1) the Dust Veil Index of Lamb, (2) a solar parameterization which includes the length of the solar cycle, and (3) anthropogenic forcing. The implication is that all three forcings are important in explaining the temperature variations. The general similarity in low-frequency trends between the two independently-derived time series supports the validity of both the model estimates and the tree-ring reconstruction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, R. S. and Jones, P. D.: 1993, ‘“Little Ice Age”, Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends’, Holocene 3, 367–376.Google Scholar
  2. Cook, E. R. and Kairiukstis, L. (eds.): 1990, Methods of Dendrochronology, Kluwer Academic Press, Dordrecht.Google Scholar
  3. D'Arrigo, R. D. and Jacoby, G. C.: 1993, ‘Secular Trends in High Northern Latitude Temperature Reconstructions Based on Tree Rings’, Clim. Change 25, 163–177.Google Scholar
  4. Eddy, J. A.: 1976, ‘The Maunder Minimum’, Science 192, 1189–1202.Google Scholar
  5. Free, M. P.: 1996, Volcanoes, Solar Variability and Climatic Change over the Past 600 Years. Ph.D. Thesis, University of Maryland.Google Scholar
  6. Free, M. P. and Robock, A.: 1998, ‘Causes of the Little Ice Age’, in preparation for submission to J. Geophys. Res. Google Scholar
  7. Friis-Christensen, E. and Lassen, K: 1991, ‘Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate’, Science 254, 698–700.Google Scholar
  8. Fritts, H. C.: 1976, Tree Rings and Climate, Academic Press, New York.Google Scholar
  9. Graf, H-F., Kirchner, I. Robock, A., and Schult, I.: 1993, ‘Pinatubo Eruption Winter Climate Effects: Model Versus Observations’, Clim. Dyn. 9, 81–93.Google Scholar
  10. Grove, J. M.: 1988, The Little Ice Age, Methuen, New York.Google Scholar
  11. Groveman, B. S. and Landsberg, H. E.: 1979, ‘Simulated Northern Hemisphere Temperature Departures: 1579–1880’, Geophys. Res. Lett. 6, 767–769.Google Scholar
  12. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climate Impact of Increasing Atmospheric Carbon Dioxide’, Science 213, 9570–966.Google Scholar
  13. Hansen, J. and Lebedeff, S.: 1987, ‘Global Trends of Measured Surface Air Temperature’, J. Geophys. Res. 92, 345–372.Google Scholar
  14. Hoffert, M. I., Callegari, A. J., and Hsieh, C.-T.: 1980, ‘The Role of Deepsea Heat Storage in the Secular Response to Climate Forcing’, J. Geophys. Res. 85, 6667–6679.Google Scholar
  15. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Clim. Change 1995 — The Science of Climate Change, Cambridge University Press, Cambridge, p. 584.Google Scholar
  16. Hoyt, D. V. and Schatten, K. H.: 1993, ‘A Discussion of Plausible Solar Irradiance Variations, 1700–1992’, J. Geophys. Res. 98, 18,895–18,906.Google Scholar
  17. Jacoby, G. C. and D'Arrigo, R. D.: 1989, ‘Reconstructed Northern Hemisphere Annual Temperature Since 1671 Based on High-Latitude Tree-Ring Data from North America’, Clim. Change 14, 39–59.Google Scholar
  18. Jacoby, G. C. and D'Arrigo, R. D.: 1995, ‘Tree-Ring Width and Density Evidence of Climatic and Potential Forest Change in Alaska’, Global Biogeog. Cycles 9, 227–234.Google Scholar
  19. Jacoby, G. C., D'Arrigo, R. D., and Davaajamts, Ts.: 1996, ‘Mongolian Tree Rings and Twentieth Century Warming’, Science 273, 771–773.Google Scholar
  20. Kelly, P. M. and Wigley, T. M. L.: 1992, ‘Solar Cycle Length, Greenhouse Forcing and Global Climate’, Nature 360, 328–330.Google Scholar
  21. Kramer, P. J. and Kozlowski, T. T.: 1979, Physiology of Woody Plants, Academic Press, Orlando, p. 811.Google Scholar
  22. Lamb, H. H.: 1970, ‘Volcanic Dust in the Atmosphere, with a Chronology and Assessment of its Meteorological Significance’, Phil. Trans. R. Soc., London Ser. A. 266, 425–533.Google Scholar
  23. Lamb, H. H.: 1977, ‘Supplementary Volcanic Dust Veil Index Assessments’, Climate Monitor 6, 57–67.Google Scholar
  24. Lamb, H. H.: 1983, ‘Update of the Chronology of Assessments of the Volcanic Dust Veil Index’, Climate Monitor 12, 79–90.Google Scholar
  25. Lean, J., Beers, J., and Bradley, R.: 1995, ‘Reconstruction of Solar Irradiance Since 1610: Implications for Climate Change’, Geophys. Res. Lett. 22, 3195–3198.Google Scholar
  26. Mann, M. E., Bradley, R. S., and Hughes, M. K.: 1998, ‘Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries’, Nature 392, 779–787.Google Scholar
  27. Newhall, C. G. and Self, S.: 1982, ‘The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism’, J. Geophys. Res. 87, 1231–1238.Google Scholar
  28. Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: 1997, ‘Arctic Environmental Change of the Last Four Centuries’, Science 278, 1251–1256.Google Scholar
  29. Rind, D.: 1996, ‘The Potential for Modeling the Effects of Different Forcing Factors on Climate during the Past 2000 Years’, in Jones, P. D., Bradley, R. S., and Jouzel, J. (eds.), NATO ASI Series, Vol. 141, Climatic Variations and Forcing Mechanisms of the Last 2000 Years, Springer Verlag, Berlin, pp. 563–579.Google Scholar
  30. Rind, D. and Overpeck, J.: 1994, ‘Hypothesized Causes of Decade to Century-Scale Climate Variability: Climate Model Results’, Quat. Sci. Rev. 12, 357–374.Google Scholar
  31. Robock, A.: 1979, ‘The “Little Ice Age”: Northern Hemisphere Average Observations and Model Calculations’, Science 206, 1402–1404.Google Scholar
  32. Robock, A.: 1981, ‘A Latitudinally Dependent Volcanic Dust Veil Index and its Effect on Climate Simulations’, J. Volcanol. Geotherm. Res. 11, 67–80.Google Scholar
  33. Robock, A. and Free, M.: 1995, ‘Ice Cores as an Index of Global Volcanism from 1850 to the Present’, J. Geophys. Res. 100, 11,549–11,567.Google Scholar
  34. Robock, A. and Free, M.: 1996, ‘The Volcanic Record in Ice Cores for the Past 2000 Years’, in Jones, P. D., Bradley, R. S., and Jouzel, J. (eds.), NATO ASI Series, Vol. I41, Climatic Variations and Forcing Mechanisms of the Last 2000 Years, Springer Verlag, Berlin, pp. 533–546.Google Scholar
  35. Schneider, S. H. and Mass, C.: 1975, ‘Volcanic Dust, Sunspots and Temperature Trends’, Science 190, 741–746.Google Scholar
  36. Schonwiese, C. D.: 1984, ‘Northern Hemisphere Temperature Statistics and Forcing: 1579–1880 AD’, Arch. Met. Geoph. Biocl. Ser. B35, 155–178.Google Scholar
  37. Simkin, T. and Siebert, L.: 1994, Volcanoes of the World, 2nd Edition, Geoscience Press, Tucson, AZ.Google Scholar
  38. Wigley, T. M. L. and Schlesinger, M. E.: 1985, ‘Analytical Solution for the Effect of Increasing CO2 on Global Mean Temperature’, Nature 315, p. 649.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Rosanne D'Arrigo
  • Gordon Jacoby
  • Melissa Free
  • Alan Robock

There are no affiliations available

Personalised recommendations