Journal of Chemical Ecology

, Volume 26, Issue 4, pp 1065–1078

Effects of Alfalfa Saponins on the Moth Spodoptera littoralis

  • Manal M. Adel
  • František Sehnal
  • Marian Jurzysta
Article
  • 277 Downloads

Abstract

Alfalfa saponins administered to Spodoptera littoralis in the larval diet caused prolongation of the larval and pupal stages, retarded growth, increased mortality, and reduced fecundity and fertility. At least some of these effects were probably due to digestion problems manifested by longer food retention in the gut. Preliminary data indicated that the efficiency of food utilization was not altered. Saponin aglycones exerted similar developmental derangements; medicagenic acid proved most active; hederagenin, soysaponogenol A, and soysaponogenol B exhibited moderate activities; and soysaponogenol E was inactive. It is proposed that saponins become active only when the sugar component is cleaved off by the gut glycosylases and that substrate specificity of these enzymes is decisive for the activity of ingested saponins. For example, all tested α-L-arabinopyranosyl glycosides were inactive, while the corresponding aglycones or glucosides were active. The liberated aglycones are apparently deposited in the tissues and exert post-feeding disturbances such as delay of imaginal ecdysis and reduced egg hatchability.

Alfalfa armyworm insect feeding saponins Spodoptera plant–insect relations triterpenoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Felton, G. W., and Gatehouse, J. A. 1996. Antinutritive plant defense mechanisms, pp. 373–416, in M. J. Lehane and P. F. Billingsley (eds.). Biology of the Insect Midgut. Chapman & Hall, London.Google Scholar
  2. Hagedorn, H. H. 1985. The role of ecdysteroids in reproduction, pp. 205–262, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8. Pergamon Press, Oxford.Google Scholar
  3. Harmatha, J., Mauchampe, B., Arnault, C., and SlÁma, K. 1987. Identification of a spirostanetype saponin in the flowers of leek with inhibitory effects on growth of leek-moth larvae. Biochem. Syst. Ecol. 15:113–116.Google Scholar
  4. Hubrecht, F., Delaude, C., Gilson, J. C., and Gaspar, C. 1989. Activité de plusieurs extraites de plantes originaires du Zaire àl'egard de Spodoptera frugiperda J. E. Smith. Med. Fac. Landbouww. Rijksuniv. Gent 54?3a:937–944.Google Scholar
  5. Ishaaya, I. 1986. Nutritional and allelochemic insect-plant interactions relating to digestion and food intake: some examples, pp. 191–223, in J. R. Miller and T. A. Miller (eds.). Insect-Plant Interactions. Springer-Verlag, New York.Google Scholar
  6. Ishaaya, I., and Birk, Y. 1965. Soybean saponins IV. The effect of proteins on the inhibitory activity of soybean saponins on certain enzymes. J. Food Sci. 30:118–120.Google Scholar
  7. Ishaaya, I., Birk, Y., Bondi, A., and Tencer, Y. 1969. Soybean saponins IX. Studies of their effects on birds, mammals and cold-blooded organisms. J. Sci. Food Agric. 20:433–436.Google Scholar
  8. Jain, C., and Tripathi, A. K. 1991. Insect feeding-deterrent activity of some saponin glycosides. Phytother Res. 5:139–141.Google Scholar
  9. Jurzysta, M. 1982. Investigations on saponins of native alfalfa (Medicago media Pers.) populations. Habilitation's Thesis Ser. R (170), pp. 1–64, IUNG Pulawy (in Polish).Google Scholar
  10. Lee, M. K., Ling, Y. C., Jurzysta, M., and Waller, G. R. 1996. Saponins from alfalfa, clover, and mungbeans analyzed by electrospray ionization-mass spectrometry as compared with positive and negative FAB-mass spectrometry, pp. 353–364, in G. R. Waller and K. Yamasaki (eds.). Saponins Used in Food and Agriculture. Plenum Publishing, New York.Google Scholar
  11. Matsuda, K., Kaneko, M., Kusaka, K., Shishido, T., and Tamaki, Y. 1998. Soyasaponins as feeding stimulants to the oriental clouded yellow larva, Colias erate poliographus (Lepidoptera, Pieridae). Appl. Entomol. Zool. 33:255–258.Google Scholar
  12. Meisner, J., and Mitchell, B. K. 1983. Phagodeterrency induced by two cruciferous plants in adults of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae). Can. Entomol. 115:1209–1214.Google Scholar
  13. Nozzolillo, C., Arnason, J. T., Campos, F., Donskov, N., and Jurzysta, M. 1997. Alfalfa leaf saponins and insect resistance. J. Chem. Ecol. 23:995–1002.Google Scholar
  14. Oleszek, W. 1996. Alfalfa saponins: Structure, biological activity, and chemotaxonomy, pp. 155–170, in G. R. Waller and K. Yamasaki (eds.). Saponins Used in Food and Agriculture. Plenum Press, New York.Google Scholar
  15. Oleszek, W., Price, K. R., Colquhoun, I. J., Jurzysta, M., Ploszynski, M., and Fenwick, G. R. 1990. Isolation and identification of alfalfa (Medicago sativa L.) root saponins: Their activity in relation to a fungal bioassay. J. Agric. Food Chem. 38:1810–1817.Google Scholar
  16. Oleszek, W., Jurzysta, M., and Gorski, P. 1992. Alfalfa saponins—the allelopathic agents, pp. 151–164, in S. J. H. Rizvi and V. Rizvi (eds.). Frontiers of Allelochemical Research. Chapman & Hall, London.Google Scholar
  17. Pedersen, M. W., Barnes, D. K., Sorensen, E. L., et al. 1976. Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits. Crop Sci. 16:193–199.Google Scholar
  18. Potter, S. M., and Kimmerer, T. W. 1989. Inhibition of herbivory on young holly leaves: Evidence of defensive role of saponins. Oecologia 78:322–329.Google Scholar
  19. Potter, S. M., Jimenez-Flores, R., Pollack, S. M., et al. 1993. Protein-saponin interaction and its influence on blood lipids. J. Agric. Food Chem. 41:1287–1291.Google Scholar
  20. Pracros, P. 1982. Intéret comparé de l'éstimation biologique de la valeur nutritionnelle des sources protéiniques par des vertébrés (rats et poulets) et par un insecte (Tenebrio molitor L.). C.R. Acad. Agric. Fr. 1982:1279–1285.Google Scholar
  21. Puszkar, L., Jastrzebski, A., Jurzysta, M., and Bialy, Z. 1994. Alfalfa saponins as a chance in the integrated hop protection. Mat. XXXIV Ses. Nauk. IOR, Poznan, Vol. 2, pp. 255–259 (in Polish).Google Scholar
  22. Sehnal, F. 1989. Hormonal role of ecdysteroids in insect larvae and during metamorphosis, pp. 271–278, in J. Koolman (ed.). Ecdysone. Georg Thieme-Verlag, Stuttgart.Google Scholar
  23. Shany, S., Gestetner, B., Birk, Y., and Bondi, A. 1970. Lucerne saponins III. Effect of lucerne saponins on larval growth and their detoxification by various sterols. J. Sci. Food Agric. 21:508–510.Google Scholar
  24. Shukla, Y. N., Archana Rani, TRIPATHI, A. K., and Sharma, S. 1996. Antifeedant activity of ursolic acid isolated from Duboisia myoporoides. Phytotherapy 10:359–360.Google Scholar
  25. Sutherland, O. R. W., Hood, N. D., and Hillier, J. R. 1975. Lucerne root saponins a feeding deterrent for the grass grub, Costelytra zealandica (Coleoptera: Scarabeidae). N.Z. J. Zool. 2:93–100.Google Scholar
  26. Tava, A., and Odoardi, M. 1996. Saponins from Medicago spp.: Chemical characterization and biological activity against insects, pp. 97–109, in G. R. Waller and K. Yamasaki (eds.). Saponins Used in Food and Agriculture. Plenum Press, New York.Google Scholar
  27. Tava, A., Forti, D., and Odoardi, M. 1992. Alfalfa saponins: Isolation, chemical characterization and biological activity against insects. Proceedings, X Eucarpia Medicago spp. Group Meeting, Lodi, Italy, pp. 283–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Manal M. Adel
    • 1
  • František Sehnal
    • 1
  • Marian Jurzysta
    • 2
  1. 1.Institute of Entomology, Academy of Sciences, and Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of Soil Science and Plant Cultivation, Osada PalacowaPulawyPoland

Personalised recommendations