Advertisement

Climatic Change

, Volume 41, Issue 1, pp 37–52 | Cite as

Quantifying the Impact of Global Climate Change on Potential Natural Vegetation

  • Martin T. Sykes
  • I. Colin Prentice
  • Fouzia Laarif
Article

Abstract

Impacts of climate change on vegetation are often summarized in biome maps, representing the potential natural vegetation class for each cell of a grid under current and changed climate. The amount of change between two biome maps is usually measured by the fraction of cells that change class, or by the kappa statistic. Neither measure takes account of varying structural and floristic dissimilarity among biomes. An attribute-based measure of dissimilarity (ΔV) between vegetation classes is therefore introduced. ΔV is based on (a) the relative importance of different plant life forms (e.g. tree, grass) in each class, and (b) a series of attributes (e.g. evergreen-deciduous, tropical-nontropical) of each life form with a weight for each attribute. ΔV is implemented here for the most used biome model, BIOME 1 (Prentice, I. C. et al., 1992). Multidimensional scaling of pairwise ΔV values verifies that the suggested importance values and attribute weights lead to a reasonable pattern of dissimilarities among biomes. Dissimilarity between two maps (ΔV) is obtained by area-weighted averaging of ΔV over the model grid. Using ΔV, present global biome distribution from climatology is compared with anomaly-based scenarios for a doubling of atmospheric CO2 concentration (2 × CO2), and for extreme glacial and interglacial conditions. All scenarios are obtained from equilibrium simulations with an atmospheric general circulation model coupled to a mixed-layer ocean model. The 2 × CO2 simulations are the widely used OSU and GFDL runs from the 1980's, representing models with low and high climate sensitivity, respectively. The palaeoclimate simulations were made with CCM1, with sensitivity similar to GFDL. ΔV values for the comparisons of 2 × CO2 with present climate are similar to values for the comparisons of the last interglacial and mid-Holocene with present climate. However, the two simulated 2 × CO2 cases are much more like each other than they are to the simulated interglacial cases. The largest ΔV values were between the last glacial maximum and all other cases, including the present. These examples illustrate the potential of ΔV in comparing the impacts of different climate change scenarios, and the possibility of calibrating climate change impacts against a palaeoclimatic benchmark.

Keywords

Climate Sensitivity Atmospheric General Circulation Model Present Climate Vegetation Class Potential Natural Vegetation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: 1987, ‘Vostok Ice Core Provides 160,000-Year Record of Atmospheric CO2’, Nature 329, 408-414.Google Scholar
  2. Claussen, M.: 1994, ‘On Coupling Global Biome Models with Climate Models’, Clim. Res. 4, 203-221.Google Scholar
  3. Claussen, M. and Gayler, V.: 1997, ‘The Greening of the Sahara During the Mid-Holocene: Results of an Interactive Atmosphere-biome Model’, Global Ecol. Biogeog. Lett. 6, 369-377.Google Scholar
  4. Cohen, J.: 1960, ‘A Coefficient of Agreement for Nominal Scales’, Educ. Psychol. Meas. 20, 37-46.Google Scholar
  5. Crowley, T. J.: 1993, ‘Use and Misuse of the Geologic “Analogs” Concept’, in Eddy, J. and Oeschger, H. (eds.), Global Changes in the Perspective of the Past, Wiley, Chichester, pp. 17-28.Google Scholar
  6. Foley, J. A., Kutzbach, J. E., Coe, M. T., and Levis, S. T.: 1994, ‘Feedbacks Between Climate and Boreal Forests During the Mid-Holocene’, Nature 371, 52-54.Google Scholar
  7. Foley, J. A., Prentice, I. C., Ramankutty, N. M., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’, Global Biogeochem. Cycles 10, 603-628.Google Scholar
  8. Gallimore, R. G. and Kutzbach, J. E.: 1989, ‘Effects of Soil Moisture on the Sensitivity of a Climate Model to Earth Orbital Forcing at 9000 yr BP’, Clim. Change 14, 175-205.Google Scholar
  9. Gates, W. L., Mitchell, J. F. B., Boer, G. J., Dubasch, U., and Meleshko, V. P.: 1992, ‘Climate Modelling, Climate Prediction and Model Validation’, in Houghton, J. T., Callander, B.A., and Varney, S. K. (eds.), Climate Change 1992, Cambridge University Press, Cambridge, pp. 97-132.Google Scholar
  10. Harrison, S. P., Jolly, D., Laarif, F., Abe-Ouchi, A., Dong, B., Herterich, K., Hewitt, C., Joussaume, S., Kutzbach, J. E., Mitchell, J. F. B., de Noblet, N., and Valdes, P.: in press, ‘Intercomparison of Simulated Global Vegetation Distributions in Response to 6 Kyr B.P. Orbital Forcing’, J. Climate 2, 2721-2742.Google Scholar
  11. Harrison, S. P., Kutzbach, J. E., Prentice, I. C., Behling, P. J., and Sykes, M. T.: 1995, ‘The Response of Northern Hemisphere Extratropical Climates to Orbitally-induced Changes in Insolation During the Last Interglacial: Results of Atmospheric General Circulation Model and Biome Simulations’, Quatern. Res. 43, 174-184.Google Scholar
  12. Harrison, S. P., Prentice, I. C., and Bartlein, P. J.: 1992, ‘Influence of Insolation and Glaciation on Atmospheric Circulation in the North Atlantic Sector: Implications of General Circulation Model Experiments for the Late Quaternary Climatology of Europe’, Quatern. Sci. Rev. 11, 283-300.Google Scholar
  13. Haxeltine, A. and Prentice, I. C.: 1996, ‘BIOME 3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition Among Plant Functional Types’, Global Biogeochem. Cycles 10, 693-709.Google Scholar
  14. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 365.Google Scholar
  15. Huntley, B. and Prentice, I. C.: 1993, ‘Holocene Vegetation and Climates of Europe’, in Wright Jr., H. E., Kutzbach, J. E., Webb III, T., Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J. (eds.), Global Climates since the Last Glacial Maximum, University of Minnesota, Minneapolis, pp. 136-168.Google Scholar
  16. Jolly, D. and Haxeltine, A.: 1997, ‘Effect of Low Glacial Atmosphere CO2 on African Tropical Montane Vegetation’, Science 276, 786-788.Google Scholar
  17. Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models — Projections of Future Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995 The Science of Climate Change, Cambridge University Press, Cambridge, pp. 289-357.Google Scholar
  18. Landis, J. R. and Koch, G. G.: 1977, ‘The Measurement of Observer Agreement for Categorical Data’, Biometrics 33, 159-174.Google Scholar
  19. Mitchell, J. F. B.: 1990, ‘Greenhouse Warming: Is the Mid-Holocene a Good Analogue?’, J. Climate 3, 1177-1192.Google Scholar
  20. Kruskal, J. B.: 1964, ‘Nonmetric Multidimensional Scaling: A Numerical Method’, Psychometrika 29, 115-129.Google Scholar
  21. Kutzbach, J. E., Bonan, G. B., Foley, J. A., and Harrison, S. P.: 1996, ‘Feedbacks Between Climate and Grasslands/Soils in Northern Africa During the Middle Holocene’, Nature 384, 623-626.Google Scholar
  22. Kutzbach, J. E., Gallimore, R., Harrison, S. P., Behling, P. J., Selin, R., and Laarif, F.: 1998, ‘Climate and Biome Simulations for the Past 21,000 years’, Quat. Sci. Rev. 17, 473-506.Google Scholar
  23. Manabe, S. and Wetherald, R. T.: 1987, ‘Large Scale Changes in Soil Wetness Induced by an Increase in Carbon Dioxide’, J. Atmos. Sci. 44, 1211-1235.Google Scholar
  24. Melillo, J., Prentice, I. C., Schulze, E.-D., Farquhar, G., and Sala, O.: 1996, ‘Terrestrial Biotic Responses to Environmental Change and Feedbacks to Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell K. (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, pp. 445-482.Google Scholar
  25. Monserud, R. A. and Leemans, R.: 1992, ‘Comparing Global Vegetation Maps with the Kappa Statistic’, Ecol. Modelling 62, 275-293.Google Scholar
  26. Neilson, R. P.:1993, ‘Vegetation Redsitribution: A Possible Biosphere Source of CO2 During Climatic Change’, Water, Air, Soil Pollut. 70, 659-673.Google Scholar
  27. Neilson, R. P.: 1995, ‘A Model for Predicting Continental Scale Vegetation Distribution and Water Balance’, Ecol. Appl. 5, 362-386.Google Scholar
  28. Peltier, R. A.: 1994, ‘Ice Age Paleotopography’, Science 265, 195-201.Google Scholar
  29. Pitelka, L., Ash, J., Berry, S., Bradshaw, R. H. W., Brubaker, L. B., Clark, J., Davis, M. B., Dyer, J., Gardner, R., Gitay, H., Hengeveld, R., Hope, G., Huntley, B., King, G., Lavorel, S., Mack, R., Malanson, G., McGlone, M., Noble, I., Prentice, I. C., Reymanek, M., Solomon, A. M., Sugita, S., and Sykes, M. T.: 1997, ‘Plant Migration and Climate Change’, Am. Sci., 85, 463-473.Google Scholar
  30. Podani, J.: 1994, Multivariate Analysis in Ecology and Systematics, SPB Academic Publishing, The Hague, p. 316.Google Scholar
  31. Prentice, I. C.: 1977, ‘Non-metric Ordination in Ecology’, J. Ecol. 65, 85-94.Google Scholar
  32. Prentice, I. C., Cramer, W., Harrison, S., Leemans, R., Monserud, R. A., and Solomon, A.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117-134.Google Scholar
  33. Prentice, I. C. and Sykes, M. T.: 1995, ‘Vegetation Geography and Global Carbon Storage Changes’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climate System, Oxford University Press, New York, pp. 304-312.Google Scholar
  34. Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O., and Bartlein, P. J.: 1993, ‘Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum’, Global Ecol. Biogeog. Lett. 3, 67-76.Google Scholar
  35. Rind, D.: 1993, ‘How Will Future Climate Changes Differ from those of the Past?’, in Eddy, J., and Oeschger, H. (eds.), Global Changes in the Perspective of the Past, Wiley, Chichester, pp. 39-50.Google Scholar
  36. Schlesinger, M. E. and Zhao, Z. C.: 1989, ‘Seasonal Climatic Changes Induced by Doubled CO2 as Simulated by the OSU Atmospheric GCM/Mixed Layer Ocean Model’, J. Clim. 2, 459-495.Google Scholar
  37. TEMPO (Kutzbach, J. E., Bartlein, P. J., Foley, J. A., Harrison, S. P, Hostetler, S. W., Liu, Z., Prentice, I. C., and Webb III, T.): 1996, ‘The Potential Role of Vegetation Feedback in the Climate Sensitivity of High-latitude Regions: A Case Study at 6000 Years B.P’, Global Biogeochem. Cycles 10, 727-736.Google Scholar
  38. Texier, D., de Noblet, N., Harrison, S. P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I.C., and Tarasov, P.: 1997, ‘Quantifying the Role of Biosphere-atmosphere Feedbacks in Climate Change: Coupled Model Simulations for 6000 yr BP and Comparison with Palaeodata for Northern Eurasia and Northern Africa’, Clim. Dyn. 13, 865-882.Google Scholar
  39. VEMAP Members: 1995, ‘Vegetation/Ecosystem Mapping and Analysis Project (VEMAP): A Comparison of Biogeography and Biogeochemistry Models in the Context of Global Change’, Global Biogeochem. Cycles 9, 407-437.Google Scholar
  40. Webb, T. III and Wigley, T.: 1985, ‘What Past Climates Can Indicate about a Warmer World’, in MacCracken M. and Luther, F. (eds.), The Potential Climatic Effects of Increasing Carbon Dioxide, DOE/ER-0237, U.S. Department of Energy, Washington, D.C., pp. 239-257.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Martin T. Sykes
    • 1
  • I. Colin Prentice
    • 1
  • Fouzia Laarif
    • 2
  1. 1.Plant Ecology, Ecology BuildingLund UniversityLundSweden
  2. 2.Dynamic PalaeoclimatologyLund UniversityLundSweden

Personalised recommendations