Journal of Bioenergetics and Biomembranes

, Volume 31, Issue 4, pp 347–366 | Cite as

Mitochondrial Oxygen Radical Generation and Leak: Sites of Production in States 4 and 3, Organ Specificity, and Relation to Aging and Longevity

  • Gustavo Barja
Article

Abstract

Studies in heart and nonsynaptic brain mitochondria from two mammals and three birds showthat complex I generates oxygen radicals in heart and nonsynaptic brain mitochondria in States4 and 3, whereas complex III does it only in heart mitochondria and only in State 4. Theincrease in oxygen consumption during the State 4 to 3 transition is not accompanied by aproportional increase in oxygen radical generation. This will protect mitochondria and tissuesduring bursts of activity. Comparisons between young and old rodents do not show a consistentpattern of variation in mitochondrial oxygen radical production during aging. However, allthe interspecies comparisons performed to date between different mammals, and betweenmammals and birds, agree that animals with high maximum longevities have low rates ofmitochondrial oxygen radical production, irrespective of the value of their basal specificmetabolic rate. The sites and mechanisms allowing this, the recently described low degree ofmembrane fatty acid unsaturation of longevous animals, and their relation to longevity andaging are discussed.

Free radicals H2O2 complex I heart brain free-radical leak complex III mitochondria aging longevity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anson, R. M., Croteau, D. L., Stierum, R. H., Fliburn, C., Parsell, R., and Bohr, V. A. (1998). Nucleic Acids Res. 26, 662-668.Google Scholar
  2. Austad, S. N., and Fisher, K. E. (1992). Amer. J. Primatol. 28, 251-261.Google Scholar
  3. Barja, G. (1998). Ann. NY Acad. Sci., 854, 224-238.Google Scholar
  4. Barja, G. (1999). In Methods in Aging Research (Yu, B. P. ed.), CRC Press, Boca Raton, Florida, pp. 533-548.Google Scholar
  5. Barja, G., and Herrero, A. (1998). J. Bioenerg. Biomembr. 30, 235-243.Google Scholar
  6. Barja, G., Cadenas, S., Rojas, C., López-Torres, M., and Pérez-Campo, R. (1994a). Comp. Biochem. Physiol. 108B, 501-512.Google Scholar
  7. Barja, G., Cadenas, S., Rojas, C., Pérez-Campo, R., and López-Torres, M. (1994b). Free Radical Res. 21, 317-328.Google Scholar
  8. Beckman, K. B., and Ames, B. N. (1996). Methods Enzymol. 264, 442-453.Google Scholar
  9. Beckman, K. B., and Ames, B. N. (1998). Physiol. Rev. 78, 547-581.Google Scholar
  10. Boveris, A., and Chance, B. (1973). Biochem. J. 134, 707-716.Google Scholar
  11. Boveris, A., Oshino, N., and Chance, B. (1972). Biochem. J. 128, 617-630.Google Scholar
  12. Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976). Biochem J. 156, 435-444.Google Scholar
  13. Brand, M. D., and Murphy, M. P. (1987). Biol. Rev. 62, 141-193.Google Scholar
  14. Cadenas, E., and Boveris, A. (1980). Biochem. J. 188, 31-37.Google Scholar
  15. Cadenas, E., Boveris, A., Ragan C. I., and Stoppani, A. O. M. (1977). Arch. Biochem. Biophys. 180, 248-257.Google Scholar
  16. Cadenas, S., Barja, G., Poulsen, H. E., and Loft, S. (1997). Carcinogenesis 18, 2373-2377.Google Scholar
  17. Chance, B. (1981). In Oxygen and Living Processes (Gilbert, D., ed.), Springer Verlag, New York, pp. 200-209.Google Scholar
  18. Chance, B., and Williams, G. R. (1956). Advan. Enzymol. Related Subjects Biochem. 17, 65-134.Google Scholar
  19. Chance, B., and Hollunger, G. J. (1961). J. Biol. Chem. 236, 1534-1543.Google Scholar
  20. Cino, M., and del Maestro, R. F (1989). Arch. Biochem. Biophys. 269, 623-638.Google Scholar
  21. Clayton, D. A., Doda, J. N., and Friedberg, E. C. (1974). Proc. Natl. Acad. Sci. U.S. 71, 2777-2781.Google Scholar
  22. Cortopassi, G. A., and Wang, E. (1996). Mechan. Ageing Develop. 91, 211-218.Google Scholar
  23. Croteau, D. L., Rhys, C. A., Hudson, E. K., Dianov, G. L., Hansford, R. G., and Bohr, V. A. (1997). J. Biol. Chem. 272, 27338-27344.Google Scholar
  24. Cutler, R. G. (1991). Amer. J. Clin. Nutr. 53, 373S-379S.Google Scholar
  25. Davies, J. A., Quintanilha, A. T., Brooks, G. A., and Packer, L. (1982). Biochem. Biophys. Res. Commun. 107, 1198-1205.Google Scholar
  26. Domena, J. D., Timmer, R. T., Dicharry, S. A., and Mosbaugh, D. W. (1988). Biochemistry 27, 6742-6751.Google Scholar
  27. Dutton, P. L., Moser, C. C., Sled, V. D., Daldal, F., and Ohnishi, T. (1998). Biochim. Biophys. Acta 1364, 245-257.Google Scholar
  28. Fleming, J. E., Leon, H. A., and Miquel, J. (1981). Exp. Gerontol. 16, 287-293.Google Scholar
  29. Floyd, R. A., Zaleska, M. M., and Harmon, H. J. (1984). In Free Radicals in Molecular Biology, Aging and Disease (Aarmstrong, D., ed.), Raven Press, New York, pp. 143-161.Google Scholar
  30. Forman, H. J., and Azzi, A. (1997). FASEB J. 11, 374-375.Google Scholar
  31. Funakaga, M. and Yielding, K. L. (1979). Biochem. Biophys. Res. Commun. 90, 582-586.Google Scholar
  32. García de la Asunción, J., Millan, A., Pla, R., Bruseghini, L., Esteras, A., Pallardo, F. V., Sastre, J., and Viña, J. (1996). FASEB J. 10, 333-338.Google Scholar
  33. Gaziano, J. M., and Hennekens, C. H. (1995). Cont. Internal Med. 7, 9-14.Google Scholar
  34. Gey, K. F., Puska, P., Jordan, P., Moser, U. K. (1991). Amer. J. Clin. Nutr. 53, 326-334.Google Scholar
  35. Goodrick, C. L. (1980). Gerontology 26, 22-33.Google Scholar
  36. Grigorieff, N. (1998). J. Mol. Evol. 277, 1033-1046.Google Scholar
  37. Guarnieri, C. C., Muscari, C., and Caldarera, C. M. (1992). In Free Radicals and Aging (Emerit, E. and Chance, B., eds.), Birkhäuser, Basel, pp. 73-77.Google Scholar
  38. Hansford, R. G., Hogue, B. A., and Mildaziene, V. (1997). J. Bioenerg. Biomembr. 29, 89-95.Google Scholar
  39. Harman, D. (1956). J. Gerontol. 11, 298-300.Google Scholar
  40. Harman, D. (1972). J. Amer. Geriatr. Soc. 20, 145-157.Google Scholar
  41. Herrero, A. and Barja, G. (1997a). Mechan. Ageing Develop. 98, 95-111.Google Scholar
  42. Herrero, A., and Barja, G. (1997b). J. Bioenerg. Biomembr. 29, 241-249.Google Scholar
  43. Herrero, A. and Barja, G. (1998). Mechan. Ageing Develop. 103, 133-146.Google Scholar
  44. Hiraku, Y. and Kawanishi, S. (1996). Cancer Res. 56, 5172-5178.Google Scholar
  45. Hinkle, P. C., Butow, R. A., Racker, E., and Chance, B. (1967). J. Biol. Chem. 242, 5169-5173.Google Scholar
  46. Holloszy, J. O. (1997). J. Appl. Physiol. 82, 399-403.Google Scholar
  47. Holloszy, J. O., Smith, E. K., Vining, M., and Adams, S. A. (1985). J. Appl. Physiol. 59, 826-831.Google Scholar
  48. Jackson, M. J., Edwards, R. H. T., and Symons, M. C. R. (1985). Biochim. Biophys. Acta 847, 185-190.Google Scholar
  49. Kwong, L. K., and Sohal, R. (1998). Arch. Biochem. Biophys. 350, 118-126.Google Scholar
  50. Ku, H. H., and Sohal, R. S. (1993). Mechan. Ageing Develop. 72, 67-76.Google Scholar
  51. Ku, H. H., Brunk, UT, and Sohal, R. S. (1993). Free Radical Biol. Med. 15, 621-627.Google Scholar
  52. Lai C. K., and Clark, J. B. (1979). Methods Enzymol. 55, 51-60.Google Scholar
  53. Lee, I. M., Sieh, C. C. H., and Paffenbarger, R. S. (1995). J. Amer. Med. Assoc. 273, 1179-1184.Google Scholar
  54. Lee, Y. S., Coi, J. Y., Park, M. K., Choi, E. M., Kasai, H., and Chung, M. H. (1996). Mutat. Res. 364, 227-233.Google Scholar
  55. Loft, S., Deng, X., Tuo, J., Wellejus, A., Sorensen, M., and Poulsen, H. E. (1999). Free Radical Res., 29, 525-539.Google Scholar
  56. López-Torres, M., Pérez-Campo, R., Rojas, C., Cadenas, S., and Barja, G. (1993a). Mechan. Ageing Develop. 70, 177-179.Google Scholar
  57. López-Torres, M., Pérez-Campo, R., Rojas, C., Cadenas, S., and Barja de Quiroga, G. (1993b). Free Radical. Biol. Med. 15, 133-142.Google Scholar
  58. López-Torres M., Pérez-Campo, R., Fernández, A., Barba, C., and Barja de Quiroga, G. (1993c). J. Neurosci. Res, 34, 233-242.Google Scholar
  59. Loschen, G., Flohé, L., and Chance, B. (1971). FEBS Lett. 18, 261-264.Google Scholar
  60. Loschen, G., Azzi, A., and Flohé, L. (1973). FEBS Lett. 33, 84-88.Google Scholar
  61. Loschen, G., Azzi, A., Richter, C., and Flohé, L. (1974). FEBS Lett. 42, 68-72.Google Scholar
  62. Matsuno-Yagi, A., and Hatefi, Y (1996). J. Biol. Chem. 271, 6164-6171.Google Scholar
  63. Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F. (1993). Ann. Neurol. 34, 609-616.Google Scholar
  64. Myers, K.A., Saffhill, R., and O'Connor, P.J. (1988). Carcinogenesis 9, 285-292.Google Scholar
  65. Miquel, J. (1991). Arch. Gerontol. Geriatr. 12, 99-117.Google Scholar
  66. Muscari, C., Frascaro, M., Guarnieri, C., and Caldarera, C.M. (1990). Biochim. Biophys. Acta 1015, 200-204.Google Scholar
  67. Nohl, H. (1986) In Modern Aging Research. Free Radicals, Aging and Degenerative Diseases (Johnson, J. E., Walford, R., and Harman, D. eds.), Vol. 8. Alan Liss, New York, pp.77-97.Google Scholar
  68. Nohl, H. (1987). FEBS Lett. 214, 269-273.Google Scholar
  69. Nohl, H. and Jordan, W. (1986). Biochem. Biophys. Res. Commun. 138, 533-539.Google Scholar
  70. Nohl, H., and Hegner, D. (1978). Eur. J. Biochem. 82, 563-567.Google Scholar
  71. Nohl, H. and Stolze, K. (1992). Free Radical Res. Commun. 16, 409-419.Google Scholar
  72. Nohl, H., Staniek, K., and Gille, L. (1997). Exp. Gerontol. 32, 485-500.Google Scholar
  73. Ogburn, C. E., Austad, S. N., Holmes, D. J., Kiklevich, J. V., Gollahon, K., Rabinovitch, P. S., and Martin, G,M. (1998). J. Gerontol. 53, B287-B292.Google Scholar
  74. Orr, W. C., and Sohal, R. S. (1994). Science 263, 1128-1130.Google Scholar
  75. Ozawa, T. (1995). Exp. Gerontol. 30, 269-290.Google Scholar
  76. Paffenbarger, R. S., Hyde, R. T., Wing, A. L., and Hsie, C. (1986). New Engl. J. Med. 314, 605-613.Google Scholar
  77. Pamplona, R., Prat, J., Cadenas, S., Rojas, C., Pérez-Campo, R., López-Torres, M., and Barja, G. (1996). Mechan. Ageing Develop. 86, 53-66.Google Scholar
  78. Pamplona, R., Portero-Otín, M., Ruiz, C., Prat, J., Bellmunt, M. J., and Barja G. (1998). J. Lipid Res. 39, 1989-1994.Google Scholar
  79. Pamplona, R., Portero-Otín, M., Requena, J. R., Thorpe, S. R., Herrero, A.,and Barja, G. (1999a). Mechan. Ageing Develop., 106, 283-296.Google Scholar
  80. Pamplona, R., Portero-Otín, M., Riba, D., Ledo, F., Gredilla, R., Herrero, A., and Barja, G.(1999b). Aging Clin. Exp. Res, 11, 44-49.Google Scholar
  81. Pearl, R. (1928). The Rate of Living, University of London Press, London.Google Scholar
  82. Pérez-Campo, R., López-Torres, M., Rojas, C., Cadenas, S., and G. Barja (1994). J. Comp. Physiol. 163, 682-689.Google Scholar
  83. Pérez-Campo, R., López-Torres, M., Cadenas, S., Rojas, C., and G. Barja (1998). J. Comp. Physiol. 168, 149-158.Google Scholar
  84. Pitkänen, S. and Robinson, B. H. (1996). J. Clin. Invest. 98, 345-351.Google Scholar
  85. Priemé, H., Loft, S., Nyyssönen, K., Salonen, J. T., and Poulsen, H. E. (1997). Amer. J. Clin. Nutr. 65, 503-507.Google Scholar
  86. Prinzinger, R. (1993). Comp. Biochem. Physiol. 105A, 609-615.Google Scholar
  87. Ragan, C. I. (1987). Current Topics Bioenerg. 15, 1-36.Google Scholar
  88. Reznick, A., and Gershon, D. (1999). In Methods in Aging Research (Yu, B. P. ed.), CRC Press, Boca Raton, Florida, pp. 167-190.Google Scholar
  89. Richter, C. (1995). Current Topics Bioenerg. 17, 1-19.Google Scholar
  90. Richter, C., Park, J. W., and Ames, B. N. (1988). Proc. Natl. Acad. Sci. U.S. 85, 6465-6467.Google Scholar
  91. Robinson, B. H. (1998). Biochim. Biophys. Acta 1364, 271-286.Google Scholar
  92. Rubner, M. (1908). Das Problem der Lebensdauer und seine Beziehungen zu Wachstum und Ernährung (R. Oldenburg, ed.), München.Google Scholar
  93. Saul, R. L., Gee, P., and Ames, B. N. (1987). In Modern Biological Theories of Aging (Warner, H. R. ed.), Raven Press, New York, pp. 113-129.Google Scholar
  94. Sawada, M. and Carlsson, J. C. (1987). Mechan. Ageing Develop. 41, 125-137.Google Scholar
  95. Schmidt-Nielsen, K. (1984). Scaling. Why Is Animal Size so Important?, Cambridge Univ. Press, New York, pp. 106-108.Google Scholar
  96. Sherratt, H. S. A., Watmough, N. J., Johnson, M. A., and Turnbull, D. M. (1988). Methods Biochem. Anal. 33, 304-305.Google Scholar
  97. Sohal, R. S. and Weindruch, R. (1996). Science 273, 59-63.Google Scholar
  98. Sohal, R. S., Svensson, I., Sohal, B. H., and Brunk, U. T. (1989). Mechan. Ageing Develop. 49, 129-135.Google Scholar
  99. Sohal, R. S., Svensson, I., and Brunk, U. T. (1990). Mechan. Ageing Develop. 53, 209-215.Google Scholar
  100. Sohal, R. S., Ku, H. H., and Agarwal, S. (1993). Biochem. Biophys. Res. Commun. 196, 7-11.Google Scholar
  101. Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J., and Lal, H. (1994). Mechan. Ageing Develop. 74, 121-133.Google Scholar
  102. Sohal, R. S., Agarwal, S., and Sohal, B. H. (1995a). Mechan. Ageing Develop. 81, 15-25.Google Scholar
  103. Sohal, R. S., Sohal, B. H., and Orr, W. C. (1995b). Free Radical Biol. Med. 19, 499-509.Google Scholar
  104. Sorgato, M. C., Sartorelli, L., Loschen, G., and Azzi, A. (1974). FEBS Lett. 45, 92-95.Google Scholar
  105. Souza-Pinto, N. C., Croteau, D. L., Hudson, E. K., Hansford, E. K., and Bohr, R. G. (1998). Revista de Farmacia e Bioquímica da Universidade de Sao Paulo, vol. 34, Presented at the 16-04 Symposium of the IX Biennial Meeting of the International Society for Free Radical Research, Sao Paulo, 7–11 September, 1998, pp. 73.Google Scholar
  106. Takeshigue, K., and Minakami, S. (1979). Biochem. J. 180, 129-135.Google Scholar
  107. Thyagarajan, B., Padua, R. A., and Campbell, C. (1996). J. Biol. Chem. 271, 27536-27543.Google Scholar
  108. Tolmasoff, J. M., Ono, T., and Cutler, R. G. (1980). Proc. Natl. Acad. Sci U.S. 77, 2777-2781.Google Scholar
  109. Tomkinson, A. E., Bonk, R. T., and Linn, S. (1988). J. Biol Chem. 263, 12532-12537.Google Scholar
  110. Tomkinson, A. E., Bonk, R. T., Kim, J., Bartfeld, N., and Linn, S. (1990). Nucleic Acid Res. 18, 929-935.Google Scholar
  111. Turrens, J. F. (1997). Biosci. Rep. 17, 3-8.Google Scholar
  112. Turrens, J. F., and Boveris, A. (1980). Biochem. J. 191, 421-427.Google Scholar
  113. Turrens, J. F., Alexandre, A., and Lehninger, A. L. (1985). Arch. Biochem. Biophys. 237, 408-414.Google Scholar
  114. Tyler, D. D. (1992). The Mitochondria in Health and Disease, VCH, New York, pp. 90, 172–188, 253, and 305–310.Google Scholar
  115. Tzagoloff, A. (1982). Mitochondria, Plenum Press, New York, pp. 136-137, 140–141.Google Scholar
  116. Von Jagow, G., and Engel, W. D. (1981). FEBS Lett. 136, 19-24.Google Scholar
  117. Williams, J. N. (1968). Biochim. Biophys. Acta 162, 175-181.Google Scholar
  118. Yu, B. P. (1995). In Handbook of Physiology, Section 11: Aging (Masoro, E. J., ed.), Oxford University Press, New York, 613-631.Google Scholar
  119. Zastawny, T. H., Czerwinska, B., Drzewiecka, B., and Olinski, R. (1997). Free Radical Biol. Med. 22, 101-107.Google Scholar
  120. Zhan, H., Sun, C. P., Liu, C. G., and Zhou, J. H. (1992). Mechan. Ageing Develop. 62, 111-116.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Gustavo Barja
    • 1
  1. 1.Department of Animal Biology-II (Animal Physiology), Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations