Speculations in Science and Technology

, Volume 21, Issue 3, pp 187–197 | Cite as

A stratospheric chemical reaction controlling climatic change

  • D. S. Robertson


The present mechanism of radiant energy production in the atmosphere is considered and it is shown that it is not compatible with accepted principles of physics. An alternative mechanism whereby the temperature of the atmosphere and surface of the Earth is regulated by a chemical reaction in the stratosphere is described. It is shown that this mechanism can account for the changes in climate which occurred during the past ten thousand years. The effect on this mechanism of changes in the composition of atmospheric gases, including changes resulting from human activities, is described and the consequences of the changes recorded.

Carbon dioxide climate change radiant energy production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fourier, M. (1827) Mémoire sur les Températures du Globe Terrestre et des Espaces Planétaires, Mem. de l'Académie Royale des Sciences de l'Institute de France, 7, 569–604.Google Scholar
  2. 2.
    Tyndall, J. (1861) On the absorption and radiation of heat by gases and vapours, and on the physical connection of radiation. Absorption and Conduction Phil. Mag. 22S4. 169–94.Google Scholar
  3. 3.
    Arrhenius, S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag. 41, 237–76.Google Scholar
  4. 4.
    Chamberlain, T.C. (1899) A group of hypotheses bearing on climate change. J. Geology 5, 653–83.Google Scholar
  5. 5.
    Callender, G.S. (1938) The artificial production of carbon dioxide and its influence on temperature. Roy. Met. Soc. Quart. J. 64, 223–40.Google Scholar
  6. 6.
    Plass, G.N. (1956) The carbon dioxide theory of climatic change. Tellus 8, 140–54.Google Scholar
  7. 7.
    Lamb, H.H. (1966) The Changing Climate — Selected Papers. London: Methuen.Google Scholar
  8. 8.
    Lamb, H.H. (1969) World survey of climatology. In H. Flohn, (ed.) London: Elsevier.Google Scholar
  9. 9.
    Denton, G.H. and Karlén, W. (1973) Holocene climatic variations — their pattern and possible cause. Quat. Res., 3, 155–205.Google Scholar
  10. 10.
    Manage, S. and Wetherald, R.T. (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Amos. Sci. 32,No. 1, 3–15.Google Scholar
  11. 11.
    Schneider, S.H. (1975) On the carbon dioxide-climate confusion. J. Amos. Sci. 32, 2060–66.Google Scholar
  12. 12.
    Houghton, J. (1995) Comment on “The roles of carbon dioxide and water vapour in warming and cooling of the Earth's atmosphere”. Spectrochimica Acta, Part A 1391–92.Google Scholar
  13. 13.
    Barrett, J. (1995) The roles of carbon dioxide and water in warming and cooling the Earth's troposphere. Spectrochimica Acta 51A,No. 38, 415–17.Google Scholar
  14. 14.
    Yang, X., Price, J.M., Mack, J.A., Rogaski, C.A., Morgan, C.G. and Wodtke, A.M. (1995) Advances in Chemical Kinetics and Dynamics, vol. 2A. London: JAI Press Inc.Google Scholar
  15. 15.
    Riley, J.P. and Chester, R. (1971) Introduction to Marine Chemistry. London: Academic Press.Google Scholar
  16. 16.
    Imbrie, J. and Imbrie, K.P. (1979) Ice Ages: Solving the Mystery. New Jersey: Enslow Publishers.Google Scholar
  17. 17.
    Butler, C.J. and Johnston, D.J. (1994) The link between the solar dynamo and climate. Irish Astronomical Journal 21, 251–55.Google Scholar
  18. 18.
    Haigh, J.D. (1996) The impact of solar variability on climate. Science 272, 981–84.Google Scholar
  19. 19.
    Pollack, J.B., Toon, O.B., Sagan, C., Summers, A., Baldwin, B. and Van Camp, W. (1976) Volcanic explosions and climate change. J. Geophys Res. 81,No 6, 1071–83.Google Scholar
  20. 20.
    Groves, K.S., Mattingly, S.R. and Tuck, A.F. (1978) Increased atmospheric carbon dioxide and stratospheric ozone. Nature 273, 711–15.Google Scholar
  21. 21.
    Melinkov, A. and Firsova, T. (1961) Reaction between sodium peroxide octahydrate and carbon dioxide. Russ. J. Inorg. Chem. 6,No. 11, 1251–52.Google Scholar
  22. 22.
    Mel'nikov, A.H., Firsova, T.P. and Molodkina, A.N. (1962) Preparation of pure potassium peroxydicarbonate and some of its properties. Russ, J. Inorg. Chem. 7,No. 6, 637–40.Google Scholar
  23. 23.
    Johnston, H.S. (1975) Global ozone balance in the natural stratosphere. Rev. Geophys and Space Phys. 13,No. 5, 637–49.Google Scholar
  24. 24.
    Peixoto, J.P. and Oort, A.H. (1992) Physics of climate, American Institute of Physics.Google Scholar
  25. 25.
    Wayne, R.P. (1991) Chemistry of Atmospheres, 2nd ed. Oxford: Clarendon Press.Google Scholar
  26. 26.
    Goody, R.M. and Yung, Y-L. (1989) Atmospheric Radiation. Oxford: Oxford University Press.Google Scholar
  27. 27.
    Brewer, A.W. (1949) Evidence for a world circulation provided by the measurement of helium and water distribution in the stratosphere. Quart. J. Roy. Meteor. Soc. 75, Part 326, 351–63.Google Scholar
  28. 28.
    Harries, J.E. (1976) The distribution of water vapour in the stratosphere. Rev. Geophys and Space Phys. 14,No. 4, 565–75.Google Scholar
  29. 29.
    Ellasser, H.W., Harries, J.E. and Penndorf, R. (1980) Stratospheric H2O. Planet Space Sci. 28, 827–35.Google Scholar
  30. 30.
    Wagner, C. (1943) On the concentration distribution of alloy components diffusing into a metal block from a carrier gas stream. Z. Physik. Chem. A192, 197–162.Google Scholar
  31. 31.
    Chance, K.V. and Truab, W.A. (1987) Evidence for stratospheric hydrogen peroxide. J. Geophys. Res. 92,No. D3, 3061–66.Google Scholar
  32. 32.
    Marrero, T.R. and Mason, E.A. (1972) Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1,No. 1.Google Scholar
  33. 33.
    Brasseur, G. and Solomon, S. (1984) Aeronomy of the Middle Atmosphere: Chemistry and physics of the stratosphere and mesophere. Dordrecht-Reidel. 450 pp.Google Scholar
  34. 34.
    Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl, C.A., Guenther, P.R., Waterman, L.E. and Chin, J.F.S. (1976) Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus, 28No. 6, 538–51.Google Scholar
  35. 35.
    Keeling, R.F. and Shertz, S.R. (1992) Seasonal and interannual variations in atmospheric oxygen and implication for the global carbon cycle. Nature 358, 723–27.Google Scholar
  36. 36.
    Scientific Assessment of Ozone Depletion, 1994, N.O.A., N.A.S.A., W.M.O., U.N. Report, Executive Summary, p 22.Google Scholar
  37. 37.
    Hanel, R.A., Schlachman, B., Rogers, D. and Vanous, D. (1971) Nimbus 4 Michelson Interferometer. Appl. Opt. 10,No. 6, 1376–82.Google Scholar
  38. 38.
    Megie, G. and Blamont, J.E. (1977) Laser sounding of atmospheric sodium-interpretation in terms of global atmopheric parameters. Planet Space Sci. 25, 1093–1109.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D. S. Robertson
    • 1
  1. 1.MALVERNWorcestershireEngland

Personalised recommendations