Advertisement

Journal of Muscle Research & Cell Motility

, Volume 19, Issue 6, pp 575–602 | Cite as

Troponin T: genetics, properties and function

  • S. V. Perry
Article

Abstract

Troponin T (TnT) is present in striated muscle of vertebrates and invertebrates as a group of homologous proteins with molecular weights usually in the 31–36kDa range. It occupies a unique role in the regulatory protein system in that it interacts with TnC and TnI of the troponin complex and the proteins of the myofibrillar thin filament, tropomyosin and actin. In the myofibril the molecule is about 18nm long and for much its length interacts with tropomyosin. The ability of TnT to form a complex with tropomyosin is responsible for locating the troponin complex with a periodicity of 38.5nm along the thin filament of the myofibril. In addition to its structural role, TnT has the important function of transforming the TnI–TnC complex into a system, the inhibitory activity of which, on the tropomyosin–actomyosin MgATPase of the myofibril, becomes sensitive to calcium ions. Different genes control the expression of TnT in fast skeletal, slow skeletal and cardiac muscles. In all muscles, and particularly in fast skeletal, alternative splicing of mRNA produces a series of isoforms in a developmentally regulated manner. In consequence TnT exists in many more isoforms than any of the other thin filament proteins, the TnT superfamily. Despite the general homology of TnT isoforms, this alternative splicing leads to variable regions close to the N-␣and C-termini. As the isoforms have slightly different effects on the calcium sensitivity of the actomyosin MgATPase, modulation of the contractile response to calcium can occur during development and in different muscle types. TnT has recently aroused clinical interest in its potential for detecting myocardial damage and the association of mutations in the cardiac isoform with hypertrophic cardiomyopathy.

Keywords

Cardiomyopathy Alternative Splice Cardiac Muscle Hypertrophic Cardiomyopathy Contractile Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLEN, T. S., MCARDLE, K., POLYAK, E. & BUCHER, E. A. (1997) Troponin T diversity and function in C. elegans. Biophys. J. 72, A58.Google Scholar
  2. AMPHLETT, G. W., SYSKA, H. & PERRY, S. V. (1976a) Polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle. FEBS Lett. 63, 22–6.PubMedGoogle Scholar
  3. AMPHLETT, G. W., VANAMAN, T. C. & PERRY, S. V. (1976b) Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+ stimulated actomyosin ATPase of skeletal muscle actomyosin. FEBS Lett. 72, 163–8.PubMedGoogle Scholar
  4. ANDERSON, P. A. W., MALOUF, N. N., OAKELEY, A. E., PAGANI, E. D. & ALLEN, P. D. (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, foetal heart, and adult and skeletal muscle. Circulation Res. 69, 1226–33.PubMedGoogle Scholar
  5. BIRD, I. M., DHOOT, G. K. & WILKINSON, J. M. (1985) Identification of multiple variants of fast muscle troponin T in the chicken using monoclonal antibodies. Eur. J. Biochem. 150, 517–25.PubMedGoogle Scholar
  6. BODOR, G. S., PORTERFIELD, D., VOSS, E., KELLY, J., SMITH, S., & APPLE, F. S. (1995) Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin. Chem. 41, S148.Google Scholar
  7. BODOR, G. S., SURVANT, L., VOSS, E. M., SMITH, S. PORTERFIELD, D., & APPLE, F. S. (1997) Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin. Chem. 43, 476–84.PubMedGoogle Scholar
  8. BREITBART, R. E., HANH, T., NGUYEN, R. M., MEDFORD, A. T., DESTREE, V. M. & NADAL-GINARD, B. (1985) Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41, 67–82.PubMedGoogle Scholar
  9. BRIGGS, M. M. & SCHACHAT, F. (1989) N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J. Mol. Biol. 206, 245–9.PubMedGoogle Scholar
  10. BRIGGS, M. M. & SCHACHAT, F. (1993) Origin of fetal troponin T: developmentally regulated splicing of a new exon in the fast troponin T gene. Devel. Biol. 158, 503–9.Google Scholar
  11. BRIGGS, M. M. & SCHACHAT, F. (1994) Are the 5′ and 3′ alternative splicing events in troponin T mRNAs coordinated during development? Biophys. J. 66, A311.Google Scholar
  12. BRIGGS, M. M., MAREADY, M., SCHMIDT, J. M. & SCHACHAT, F. (1994) Identification of a foetal exon in the human muscle fast troponin T gene. FEBS Lett. 350, 37–40.PubMedGoogle Scholar
  13. BUENAVENTURA, P., CAO-DANH, H., GLYNN, P., TAKEUCHI, K., TAKAHASHI, S., SIMPLACEANU, E., MCGOWAN, F. X. & DEL NIDO, P. J. (1995) Protein kinase C activation in the heart: effects on calcium and contractile proteins. Ann. Thor. Surg. 60, S505–8.Google Scholar
  14. BULLARD, B., DABROWSKA, R. & WINKELMAN, I. (1973) The contractile and regulatory proteins of insect flight muscle. Biochem. J. 135, 277–86.PubMedGoogle Scholar
  15. BULLARD, B., LEONARD, K., LARKINS, A., BUTCHER, G., KARLIK, C. & FYRBERG, E. (1988) Troponin of asynchronous flight muscle. J. Mol. Biol. 204, 621–37.PubMedGoogle Scholar
  16. CABRAL-LILLY, D., TOBACMAN, L. S., MEHEGAN, J. P. & COHEN, C. (1997) Molecular polarity in tropomyosin-troponin T co-crystals. Biophys. J. 73, 1763–70.PubMedGoogle Scholar
  17. CARR, H. J., O'BRIEN, E. J. & MORRIS, E. P. (1988) Structure of tropomyosin-troponin T crystals. J. Muscle Res. Cell Motil. 9, 384–92.PubMedGoogle Scholar
  18. CHANDRA, M., KIM, J. J. & SOLARO, R. J. (1997) N-terminal deletion of cardiac troponin T reduces force but does not alter Ca2+ sensitivity or cooperativity in skinned rat cardiac fibres. Biophys. J. 72, A59.Google Scholar
  19. CHEN, A., HUANG, Q.-Q. & JIN, J.-P. (1997) Genomic structure of mouse slow skeletal muscle troponin T gene implies a prototype primary structure of troponin T. A muscle regulatory protein with multiple muscle typespeci fic and developmental isoforms. Biophys. J. 72, A58.Google Scholar
  20. CHEN, Z., HIGASHIYAMA, A., BELL, S., WATKINS, M. W., MAUGHAN, D. W. & LEWINTER, M. M. (1995) Altered expression of troponin T isoforms in a model of mild left ventricular hypertrophy in the rabbit. Circulation 92, 1–587.PubMedGoogle Scholar
  21. CHONG, P. C. S. & HODGES, R. S. (1982) Photochemical cross-linking between rabbit skeletal troponin and α-tropomyosin. J. Biol. Chem. 257, 9152–60.PubMedGoogle Scholar
  22. COOPER, T. A. & ORDAHL, C. P. (1984) A single cardiac troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226, 979–82.PubMedGoogle Scholar
  23. COOPER, T. A. & ORDAHL, C. P. (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J. Biol. Chem. 260, 11140–48.PubMedGoogle Scholar
  24. DAHIYA, R., BUTTERS, C. A. & TOBACMAN, L. S. (1994) Equilibrium linkage analysis of cardiac thin filament assembly. Implications for the regulation of muscle contraction. J. Biol Chem 269, 29457–61.PubMedGoogle Scholar
  25. DHOOT, G. K. (1988) Identification and distribution of the fast class of troponin T in the adult and developing avian skeletal muscle. J. Muscle Res. Cell Motil. 9, 446–55.PubMedGoogle Scholar
  26. DHOOT, G. K., FREARSON, N. & PERRY, S. V. (1979) Polymorphic forms of troponin T and troponin C and their localisation in striated muscle cell types. Exp. Cell Res. 122, 339–50.PubMedGoogle Scholar
  27. DHOOT, G. K. & PERRY, S. V. (1980) Components of the troponin complex and development in skeletal muscle. Exp. Cell Res. 127, 75–87.PubMedGoogle Scholar
  28. DOBROVOLSKII, A. B., GUSEV, N. B., MARTINOV, A. V. & SEVERIN, S. E. (1976) Biokhimiya 41, 1291–6.Google Scholar
  29. EBASHI, S. (1963) Third component participating in the superprecipitation of natural actomyosin. Nature 200, 1010.Google Scholar
  30. EBASHI, S. & ENDO, M. (1968) Calcium ion and muscular contraction. Prog. Biophys. Mol. Biol. 18, 123–83.PubMedGoogle Scholar
  31. EBASHI, S. & KODAMA, A. (1965) A new protein promoting aggregation of tropomyosin. J. Biochem. 58, 107.PubMedGoogle Scholar
  32. EBASHI, S., WAKABAYASHI, T. & EBASHI, F. (1971) Troponin and its components. J. Biochem. 69, 441–5.PubMedGoogle Scholar
  33. ENDO, M., NONOMURA, Y., MASAKI, T., OHTSUKI, I. & EBASHI, S. (1966) Localization of native tropomyosin in relation to striation patterns. J. Biochem. 60, 605–8.Google Scholar
  34. ENDO, T., MATSUMOTO, K., HAMA, T., OHTSUKA, Y., KATSURA, G. & OBINATA, T. (1996) Distinct troponin T genes are expressed in embryonic/larval tail skeletal muscle and adult body wall smooth muscle of ascidian. J. Biol. Chem. 271, 27855–62.PubMedGoogle Scholar
  35. FABIATO, A. & FABIATO, F. (1978) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and newborn rat ventricles. Ann. NY Acad. Sci. 307, 491–522.PubMedGoogle Scholar
  36. FENG, H. S., WATKINS, H. C., SEIDMAN, C. E., SEIDMAN, J. G. & SWEENEY, H. L. (1997) Combinated transfection of wild type and a hypertrophic cardiomyopathy mutant troponin T makes quail myotubes likely good turn in expression and functional assessment. Molec. Biol. Cell. 7, 536a.Google Scholar
  37. FISHER, G., WANG, G. & TOBACMAN, L. S. (1995) NH2-truncation of skeletal muscle troponin T does not alter the Ca2+ sensitivity of thin filament assembly. J. Biol. Chem. 270, 25455–60.PubMedGoogle Scholar
  38. FITZHUGH, G. & MARDEN, J. H. (1997) Maturation changes in troponin T expression, Ca2+ sensitivity and twitch contraction kinetics in dragonfly flight muscle. J. Exp. Biol. 200, 1473–82.PubMedGoogle Scholar
  39. FLICKER, P. F., PHILLIPS, G. N. JR & COHEN, C. (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J. Mol. Biol. 162, 485–501.Google Scholar
  40. FORISSIER, J.-F., CARRIER, L., BONNE, G., BERCOVICI, J., RICHARD, P., HAINQUE, B., TOWNSEND, P., YACOUB, M. H., FAURE, S., DUBOURG, O., MILLIARE, A., HAGEGE, A. A., DESNOS, M., KOMADJA, M. & SCHWATZ, K. (1996) Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation 94, 3069–73.PubMedGoogle Scholar
  41. FYRBERG, E., FYRBERG, C. E., BEALL, C. & SAVILLE, D. L. (1990) Drosophila melanogaster troponin T mutations engender three distinct syndromes of myofibrillar abnormalities. J. Mol. Biol. 216, 657–75.PubMedGoogle Scholar
  42. GAHLMANN, R., TROUTT, A. B., WADE, R. P., GUNNING, P. & KEDES, L. (1987) Alternative splicing generates variants in important functional domains of human slow skeletal troponin T. J. Biol. Chem. 262, 16122–6.PubMedGoogle Scholar
  43. GORZA, L., MENABO, R., DI LISA, F. & VITADELLO, M. (1997) Troponin T cross-linking in human apoptotic cardiomyocytes. Amer. J. Path. 150, 2087–97.PubMedGoogle Scholar
  44. GREASER, M. L. & GERGELY, J. (1971) Reconstitution of troponin from 3 protein components. J. Biol. Chem. 246, 4226–33.PubMedGoogle Scholar
  45. GREASER, M. L., YAMAGUCHI, M., BREKKE, C., POTTER, J. & GERGELY J. (1972) Troponin subunits and their interactions. Cold Spring Harbor Symp. Quant Biol. 37, 235–49.Google Scholar
  46. GREIG, A., HIRSCHBERG, Y., ANDERSON, P. A. W., HAINSWORTH, C., MALOUF, N. N., OAKELEY, A. E. & KAY, B. K. (1994) Molecular basis of cardiac troponin T isoform heterogeneity in rabbit heart. Circulation Res. 74, 41–7.PubMedGoogle Scholar
  47. GROSS, S. R. & MAYER, S. E. (1973) The phosphorylation of troponin B by phosphorylase b kinase in skeletal muscle of mice carrying the phosphorylase b kinase deficiency gene. Biochem. Biophys. Res. Commun. 54, 823–9.PubMedGoogle Scholar
  48. GULATI, J., BABU, A., NICKOLIC, S. D., STARC, V., SONNENBLICK, E. H. & SIRI, F. M. (1994) Troponin T modifications in hypertrophied failing guinea pig hearts. Biophys. J. 66, A406.Google Scholar
  49. GUSEV, N. B., DOBROVOLSKII, A. B. & SEVERIN, S. E. (1980) Isolation and some properties of troponin T kinase from rabbit skeletal muscle. Biochem. J. 189, 219–26.PubMedGoogle Scholar
  50. HARTSHORNE, D. J. & MUELLER, H. (1968) Fractionation of troponin into two distinct components. Biochem. Biophys. Res. Com. 31, 647–53.PubMedGoogle Scholar
  51. HARTSHORNE, D. J., PERRY, S. V. & SCHAUB, M. C. (1967) A protein factor inhibiting the magnesium activated adenosine triphosphatase of desensitised actomyosin. Biochem. J. 104, 907–13.PubMedGoogle Scholar
  52. HARTSHORNE, D. J., THEINER, M. & MUELLER, H. (1969) Studies on troponin. Biochem. Biophys. Acta 175, 320–30.PubMedGoogle Scholar
  53. HASTINGS, K. E. M., BUCHER, E. A. & EMERSON, C. P. JR (1985) Generation of troponin T isoforms by alternative RNA splicing in avian skeletal muscle. Conserved and divergent features in birds and mammals. J. Biol. Chem. 260, 13699–703.PubMedGoogle Scholar
  54. HEELEY, D. H. (1994) Investigation of the effects of phosphorylation of rabbit striated muscle α-tropomyosin and rabbit skeletal troponin T. Eur. J. Biochem. 221, 129–37.PubMedGoogle Scholar
  55. HEELEY, D. H., GOLINSKA, K. & SMILLIE, L. B. (1987) The effects of troponin T fragments T1 and T2 on the binding of non-polymerisable tropomyosin in the presence and absence of troponin I and troponin C. J. Biol. Chem. 262, 9971–8.PubMedGoogle Scholar
  56. HEELEY, D. H. & SMILLIE, L. B. (1988) Interaction of rabbit skeletal troponin T and F-actin at physiological ionic strength. Biochemistry 27, 8227–32.PubMedGoogle Scholar
  57. HIGASHI, S. & OOI, T. (1963) Crystals of tropomyosin and native tropomyosin. J. Mol. Biol. 34, 699–701.Google Scholar
  58. HILL, L. A., MEHEGAN, J. P., BUTTERS, C. A. & TOBACMAN, L. S. (1992) Analysis of troponin-tropomyosin binding to actin. Troponin does not promote interactions between tropomyosin molecules. J. Biol. Chem. 267, 16106–13.PubMedGoogle Scholar
  59. HITCHCOCK, S. (1975) Cross-linking of troponin with dimethylimide esters. Biochemistry 14, 5162–7.PubMedGoogle Scholar
  60. HITCHCOCK, S., ZIMMERMAN, C. J. & SMALLEY, C. (1981) Study of the structure of troponin T by measuring the relative reactivities of lysine with acetic anhydride. J. Mol. Biol. 147, 125–51.PubMedGoogle Scholar
  61. HONDA, H., TAMURA, T., HATORI, K. & MATSUNO, K. (1995) Decorating actin filaments with troponin T-I complexes and acceleration of their sliding movements on myosin molecules. Biochem. Biophys. Acta. 1251, 43–7.PubMedGoogle Scholar
  62. HOROWITZ, J., BULLARD, B & MERCOLA, D. (1979) Interaction of troponin subunits. Interaction between the inhibitory and tropomyosin-binding subunits. J. Biol. Chem. 254, 350–55.PubMedGoogle Scholar
  63. IMAI, H., HIRAI, S., HIRONO, M. & HIRABAYASHI, T. (1986) Many isoforms of fast skeletal muscle troponin T from chicken legs. J. Biochem. 99, 923–30.PubMedGoogle Scholar
  64. ISHII, Y. & LEHRER, S. S. (1991) Two site attachment of troponin to pyrene-labelled tropomyosin. J. Biol. Chem. 266, 6894–6903.PubMedGoogle Scholar
  65. JACKSON, P., AMPHLETT, G. W. & PERRY, S. V. (1975) The primary structure of troponin T and the interaction with tropomyosin. Biochem. J. 151, 85–97.PubMedGoogle Scholar
  66. JHA, P. K., LEAVIS, P. C. & SARKAR, S. (1996) Interaction of deletion mutants of troponin I and T: COOH-terminal truncation of troponin T abolishes troponin I binding and reduces Ca2+ sensitivity of the reconstituted regulatory system. Biochemistry 35, 16573–80.PubMedGoogle Scholar
  67. JIDEAMA, N. M., NOLAND T. A., RAYNOR, R. L., BLOBE, G. C., FABBRO, D., KAZANIETZ, M. G., BLUMBERG, P. M., HANNUN, Y. A. & KUO, J. F. (1996) Phosphorylation specificities of protein kinase isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J. Biol. Chem. 271, 23277–83.PubMedGoogle Scholar
  68. JIN, J.-P., OGUT, O. & WANG, J. (1997) Conformational and functional changes of troponin T modulated by the structure of the N-terminal variable region. Biophys. J. 72, A60.Google Scholar
  69. JIN, J.-P. & RESEK, M. E. (1996) Primary structure of mouse slow skeletal muscle troponin T and developmentally regulated expression. Mol. Biol. Cell. 7, 537a.Google Scholar
  70. JIN, J.-P. & SMILLIE, L. B. (1994) An unusual metal-binding cluster found exclusively in the avian breast muscle troponin T of Galliformes and Craciformes. FEBS Lett. 341, 135–40.PubMedGoogle Scholar
  71. JIN, J. P., WANG, J. & OGUT, O. (1998) Developmentally regulated muscle type-specific alternative splicing of the COOH-terminal variable region of fast skeletal muscle troponin T and an aberrant splicing pathway to encode a mutant COOH-terminus. Biochem. Biophys. Res. Com. 242, 540–44.PubMedGoogle Scholar
  72. JIN, J.-P., WANG, J. & ZHANG, J. (1996) Expression of cDNAs encoding mouse cardiac troponin T isoforms: characterisation of a large sample of independent clones. Gene 168, 217–21.PubMedGoogle Scholar
  73. KATAYAMA, E. (1979) Interaction of troponin I with troponin T and its fragments. J. Biochem. 85, 1379–81.PubMedGoogle Scholar
  74. KATOH, N., WISE, B. C. & KUO, J. F. (1983) Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem. J. 209, 189–95.PubMedGoogle Scholar
  75. KAWASAKI, Y. & VAN EERD, J. P. (1972) The effect of Mg++on the conformation of the Ca++-binding component of troponin. Biochem. Biophys. Res. Commun. 49, 898–905.PubMedGoogle Scholar
  76. KOPP, S. J. & BARANY, M. (1979) Phosphorylation of the 19000 dalton light chain of myosin in the perfused rat heart under the influence of negative and positive inotropic agents. J. Biol. Chem. 254, 12007–12.Google Scholar
  77. KUBAYASHI, S., TANAKA, M., TAMURA, N., HASHIMOTO, H. & HIROSE, S.-I. (1992) Serum cardiac troponin T in polymyositis/dermatomyositis. Lancet 340, 726.Google Scholar
  78. KUMON, A. & VILLAR-PALASI, C. (1979) Purification and properties of troponin T kinase from rabbit skeletal muscle. Biochim. Biophys. Acta 566, 305–20.PubMedGoogle Scholar
  79. LALLEMANT, C., SERAYDARIAN, K., MOMMAERETS, W. F. H. M. & SUH, M. (1975) A survey of the regulatory activity of some phosphorylated and dephosphorylated forms of troponin. Arch. Biochem. Biophys. 169, 367–71.PubMedGoogle Scholar
  80. LEHMAN, W. (1983) The ionic requirements for regulation by molluscan thin filaments. Biochim. Biophys. Acta 745, 1–5.PubMedGoogle Scholar
  81. LEHMAN, W., KENDRICK-JONES, J. & SZENT-GYORGI, A. G. (1972) Myosin linked regulatory systems: comparative studies. Cold Spring Harbor Symp. Quant. Biol. 37, 319–30.Google Scholar
  82. LEHMAN, W., REGENSTEIN, J. M. & RANSOM, A. L. (1976) The stoichiometry of the components of arthropod thin filaments. Biochim. Biophys. Acta 434, 215–22.PubMedGoogle Scholar
  83. LEHMAN, W. & SZENT-GYORGI, A. G. (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66, 1–30.PubMedGoogle Scholar
  84. LESZYK, J., DUMASWALA, R., POTTER, J. D., GUSEV, N. B., VERIN, A. D., TOBACMAN, L. S. & COLLINS, J. S. (1987) Bovine cardiac troponin T: amino acid sequences of the two isoforms. Biochemistry 26, 7035–42.PubMedGoogle Scholar
  85. LIN, D., BOBKOVA, A., HOMSHER, E. & TOBACMAN, L. S. (1996) Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J. Clin. Invest. 97, 2842–8.PubMedGoogle Scholar
  86. LIU, J. D., WOOD, J. G., RAYNOR, R. L., WANG, Y.-C., NOLAND, T. A. JR, ANSARI, A. A. & KUO, J. F. (1989) Subcellular distribution and immunochemical localization of protein kinase C in myocardium and phosphorylation of troponin in isolated myocytes stimulated by isoproterenol or phorbol ester. Biochem. Biophys. Res. Commun. 162, 1105–10.PubMedGoogle Scholar
  87. LONG, C. S. & ORDAHL, C. P. (1988) Transcriptional repression of an embryo-specific muscle gene. Dev. Biol. 127, 228–34.PubMedGoogle Scholar
  88. LUO, Y., WU, J.-L., GERGELY, J. & TAO, T. (1997) Troponin T and Ca2+ dependence of the distance between cys48 and cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemistry. 36, 11027–35.PubMedGoogle Scholar
  89. MAIR, J. (1997) Cardiac troponin I and troponin T: are enzymes still relevant as markers? Clin. Chem. Acta 257, 99–115.Google Scholar
  90. MAK, A. S. & SMILLIE, L. B. (1981) Structural interpretation of the two-site binding of troponin on the muscle thin filament. J. Mol. Biol. 149, 541–50.PubMedGoogle Scholar
  91. MALNIC, B., FARAH, C. S. & REINACH, F. C. (1998) Regulatory properties of the NH2- and COOH-terminal domains of troponin T. J. Biol. Chem. 273, 10594–601.PubMedGoogle Scholar
  92. MALOUF, N. N., MACMAHON, D., OAKELEY, A. E. & ANDERSON, P. A. W. (1992) A cardiac T epitope conserved across phyla. J. Biol. Chem. 267, 9269–74.PubMedGoogle Scholar
  93. MANI, R. S., MCCUBBIN, W. D. & KAY, C. M. (1975) Circular dichroism and fluorescent studies on the troponin-tropomyosin interactions. FEBS Lett. 52, 127–31.PubMedGoogle Scholar
  94. MAR, J. H. & ORDAHL, C. P. (1990) M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell Biol. 10, 4271–83.PubMedGoogle Scholar
  95. MARUYAMA, K., PRINGLE, J. W. S. & TREGEAR, R. T. (1968) The calcium sensitivity of ATPase activity of myofibrils and actomyosin from insect flight and leg muscles. Proc. Roy. Soc. Ser. B 169, 299.Google Scholar
  96. MASHIMA, J., NAKADA, K., YAO, Y., MIYAZAKI, J.-I. & HIRABAYASHI, T. (1996) Expression of chicken troponin T isoforms in cultured muscle cells. Zoolog. Sci. 13, 571–6.PubMedGoogle Scholar
  97. MASHIMA, J., NAKADA, K., YAO, Y., MIYAZAKI, J.-I. & HIRABAYASHI, T. (1997) Stability of chicken troponin T expression in cultured muscle cells. Zoolog. Sci. 14, 109–14.PubMedGoogle Scholar
  98. MAZZEI, G. J. & KUO, J. F. (1984) Phosphorylation of skeletal muscle troponin I and troponin T by phospholipid sensitive Ca2+-dependent protein kinase and its inhibition by troponin C. Biochem. J. 218, 361–9.PubMedGoogle Scholar
  99. MCLAURIN, M. D., APPLE, F. S., VOSS, E. M., HERZOG, C. A. & SHARKEY, S. W. (1997) Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease. Evidence of cardiac troponin T expression in skeletal muscle. Clin. Chem. 43, 976–82.PubMedGoogle Scholar
  100. MEDFORD, R. M., NYUGEN, H. T., MEDFORD, R. M., DESTREE, A. T., MAHDAVI, V. & NADAL GINARD, B. (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38, 409–21.PubMedGoogle Scholar
  101. MEEDEL, T. H. & HASTINGS, K. E. M. (1993) Striated muscle-type tropomyosin in a chordate smooth muscle, ascidian body-wall muscle. J. Biol. Chem. 268, 6755–64.PubMedGoogle Scholar
  102. MEINRENKEN, W. (1969) Pflügers Arch. 311, 243.Google Scholar
  103. MOIR, A. J. G., COLE, H. A. & PERRY, S. V. (1977) The phosphorylation sites of troponin T from white skeletal muscle and the effects of interaction with troponin C on their phosphorylation by phosphorylase kinase. Biochem. J. 161, 371–82.PubMedGoogle Scholar
  104. MOOLMAN, J. C., CORFIELD, V. S., POSEN, B., NGUMBELA, K., SEIDMAN, C., BRINK, P. A. & WATKINS, H. (1997) Sudden death due to troponin T mutations. J. Am. Coll. Cardiol. 29, 549–55.PubMedGoogle Scholar
  105. MOORE, G. E. & SCHACHAT, F. H. (1985) Molecular heterogeneity of histochemical fibres fibre types: a comparison of fast fibres. J. Muscle Res. Cell Motil. 6, 513–24.PubMedGoogle Scholar
  106. MORGAN, M. J., EARSHAW, J. C. & DHOOT, G. K. (1993) Novel developmentally regulated exon identified in the rat fast skeletal muscle troponin T gene. J. Cell Sci. 106, 903–8.PubMedGoogle Scholar
  107. MORRIS, E. P. & LEHRER, S. S. (1981) Fluorescence studies of the binding of two chymotryptic fragments of troponin T to tropomyosin. Biophys. J. 33, 239a.Google Scholar
  108. MORRIS, E. P. & LEHRER, S. S. (1984) Troponin-tropomyosin interactions. Fluorescent studies of the binding of troponin, troponin T and chymotryptic troponin T fragments to specifically labelled tropomyosin. Biochemistry 23, 2214–20.PubMedGoogle Scholar
  109. MURRAY, A. C. & KAY, C. M. (1971) Separation and characterisation of the inhibitory factor of the troponin system. Biochem. Biophys. Res. Commun. 44, 237–44.PubMedGoogle Scholar
  110. MYERS, C. D., GOH, P.-Y., ALLEN, T. S., BUCHER, E. A. & BOGAERT, T. (1996) Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans. J. Cell Biol. 132, 1061–77.PubMedGoogle Scholar
  111. NAKADA, K., MIYAZAKI, J.-I., SABA, R. & HIROBAYASHI, T. (1997) Natural occurrence of fast-and fast/slowmuscle chimeric fibers in the expression of TnT isoforms. Exp. Cell Res. 235, 93–9.PubMedGoogle Scholar
  112. NAKAJIMA-TANIGUCHI, C., MATSUI, H., FUJIO, Y., NAGATA, S., KISHIMOTO, T. & YAMAUCHI–TAKI-HARA, K. (1997) Novel missense mutation in cardiac troponin T gene found in Japanese patient with hypertrophic cardiomyopathy. J. Mol. Cell Card. 29, 838–43.Google Scholar
  113. NAKAMURA, M., IMAI, H. & HIRABAYASHI, T. (1989) Coordinate accumulation of troponin subunits in chicken breast muscle. Dev. Biol. 132, 389–97.PubMedGoogle Scholar
  114. NAKATA, M., NISHI, H., IWAMI, G., KOYANAGI, T., SUMIDA, E., KOGA, Y., TOSHIMA, H., HARADA, H., KIMURA, A. & IMAIZUMI, T. (1996) Different clinical manifestations of hypertrophic cardiomyopathy between patients with cardiac beta myosin heavy chain gene and cardiac troponin T gene mutations. Circulation 94, 1–110.PubMedGoogle Scholar
  115. NASSAR, R., MALOUF, N. N., KELLY, M. B., OAKELY, A. E. & ANDERSON, P. A. W. (1991) Force-apCa relation and troponin T isoforms of rabbit myocardium. Circul. Res. 69, 1470–75.Google Scholar
  116. NOLAND, T. A. & KUO, J. F. (1991) Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2+-stimulated actomyosin ATPase activity. J. Biol. Chem. 266, 4974–9.PubMedGoogle Scholar
  117. NOLAND, T. A. & KUO, J. F. (1992) Protein kinase C phosphorylation of cardiac troponin T decreases Ca2+-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem. J. 288, 123–9.PubMedGoogle Scholar
  118. NOLAND, T. A. & KUO, J. F. (1993) Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca2+ stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils and decreases actin-myosin interactions. J. Med. Cell Cardiol. 25, 53–65.Google Scholar
  119. NOLAND, T. A., RAYNOR, R. L. & KUO, J. F. (1989) Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J. Biol. Chem. 264, 20778–85.PubMedGoogle Scholar
  120. NONOMURA, Y., DRABIKOWSKI, W. & EBASHI, S. (1968) The localisataion of troponin in tropomyosin paracrystals. J. Biochem. 61, 419–22.Google Scholar
  121. OBINATA, T. (1985) Changes in myofibrillar protein isoform expression during chicken skeletal muscle development. Zool. Sci. 2, 833–47.Google Scholar
  122. OBINATA, T., SAITO, O. & TAKANO-OHMURO, H. (1984) Effects of denervation on the isoform transitions of tropomyosin, troponin T and myosin isoenzymes in chicken breast muscle. J. Biochem. 95, 585–8.PubMedGoogle Scholar
  123. OBINATA, T., TAKANO-OHMURO, H. & MATSUDA, R. (1980) Changes in troponin T and myosin isoenzymes during development in normal and dystrophic chicken muscles. FEBS Lett. 120, 195–8.PubMedGoogle Scholar
  124. OGUT, O., GRANZIER, H. L. & JIN, J.-P. (1996) Adult pectoral limb expression of a metal-binding troponin T isoform and its contribution to the Ca2+ sensitivity of myofibrils. Mol. Cell Biol. 7, 537a.Google Scholar
  125. OGUT, O. & JIN, J.-P. (1996) Expression, zinc affinity puri-fication, and characterization of a novel metal-binding cluster in troponin T: metal-stabilised a-helical structure and effects of the N-terminal region on the conformation of intact troponin T and its association with tropomyosin. Biochemistry 35, 16581–90.PubMedGoogle Scholar
  126. OJIMA, T. & NISHITA, K. (1986) Troponin from Akazara scallop striated adductor muscles. J. Biol. Chem. 261, 16749–54.PubMedGoogle Scholar
  127. OJIMA, T. & NISHITA, K. (1991) A binary complex of troponin I and troponin T from Akazara scallop striated adductor muscle. J. Biochem. 110, 847–50.PubMedGoogle Scholar
  128. OJIMA, T., TANAKA, H. & NISHITA, K. (1995) Amino acid sequence of C-terminal 17 kDa CNBr-fragment of Akazara scallop troponin I. J. Biochem. 117, 158–62.PubMedGoogle Scholar
  129. ORDAHL, C. P., KIOUSSIS, D., TILGHMAN, S. M., OVITT, C. E. & FORNWALD, J. (1980) Molecular cloning of a developmentally regulated low abundance mRNA sequence from embryonic muscle. Proc. Natl Acad. Sci. USA 77, 4519–23.PubMedGoogle Scholar
  130. OTUSKI, I. (1979) Molecular arrangement of troponin T in the thin filament. J. Biochem. 86, 491–7PubMedGoogle Scholar
  131. OTSUKI, I., MASAKI, T., NONOMURA, Y. & EBASHI, S. (1967) Periodic distribution of troponin along the thin filament. J. Biochem. 61, 817–9.PubMedGoogle Scholar
  132. OTSUKI, I., SHIRAISHI, F., SUENAGA, N., MIYATA, T. & TANOKURA, M. (1984) A 26K fragment of troponin T from rabbit skeletal muscle. J. Biochem. 95, 1337–42.PubMedGoogle Scholar
  133. OTSUKI, I., YAMAMOTO, K. & HASHIMOTO, K. (1981) Effect of two C-terminal side chymotryptic troponin T subfragments on the Ca2+ sensitivity of superprecipitation and ATPase activities of actomyosin. J. Biochem. 90, 259–61.PubMedGoogle Scholar
  134. PAN, B.-S., GORDON, A. M. & POTTER, J. D. (1991) Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilisedtropomyosin J. Biol. Chem. 266, 12432–8.PubMedGoogle Scholar
  135. PAN, B.-S. & POTTER, J. D. (1992) Two genetically expressed troponin T fragments representing α and β forms exhibit functional differences. J. Biol. Chem. 267, 23052–6.PubMedGoogle Scholar
  136. PANAVELIL, T., GUZMAN, G., JONES, M., PAN, B.-S., SZEZESNA, D. & POTTER, J. D. (1997) Structural elements of the COOH-terminal region of troponin T involved in the regulation of skeletal muscle contraction. Biophys. J. 72, A60.Google Scholar
  137. PATO, M. D., MAK, A. S. & SMILLIE, L. B. (1981) Fragments of rabbit striated muscle α-tropomyosin II. Binding to troponin-T. J. Biol. Chem. 256, 602–7.PubMedGoogle Scholar
  138. PATO, M. D. & SMILLIE, L. B. (1978) Stability and troponin T binding properties of rabbit skeletal α-tropomyosin fragments. FEBS Lett. 87, 95–8.PubMedGoogle Scholar
  139. PEARLMAN, J. A., POWASER, P. A., ELLEDGE, S. J. & CASKEY, T. (1994) Troponin T is capable of binding dystrophin via a leucine zipper. FEBS Lett. 354, 183–6.PubMedGoogle Scholar
  140. PEARLSTONE, J. R. & SMILLIE, L. B. (1977) The binding site of rabbit skeletal α-tropomyosin on troponin T. Can. J. Biochem. 55, 1032–8.Google Scholar
  141. PEARLSTONE, J. R. & SMILLIE, L. B. (1978) Troponin T fragments: physical properties and binding to troponin C. Can. J. Biochem. 56, 521–7.PubMedGoogle Scholar
  142. PEARLSTONE, J. R. & SMILLIE, L. B. (1980) Binding sites of rabbit skeletal troponin I on troponin T. Can. J. Biochem. 58, 649–54.PubMedGoogle Scholar
  143. PEARLSTONE, J. R. & SMILLIE, L. B. (1981) Identification of a second binding site on rabbit skeletal troponin T for α-tropomyosin. FEBS Lett. 128, 119–22.PubMedGoogle Scholar
  144. PEARLSTONE, J. R. & SMILLIE, L. B. (1982) Binding of troponin T fragments to several types of tropomyosin: sensitivity to calcium in the presence of troponin C. J. Biol. Chem. 257, 10587–92.PubMedGoogle Scholar
  145. PEARLSTONE, J. R. & SMILLIE, L. B. (1983) Effects of troponin-I plus-C on the binding of troponin-T fragments to tropomyosin. J. Biol. Chem. 258, 2534–42.PubMedGoogle Scholar
  146. PEARLSTONE, J. R., CARPENTER, M. R., JOHNSON, P. & SMILLIE, L. B. (1976) Amino acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc. Natl Acad. Sci. USA 73, 1902–6.PubMedGoogle Scholar
  147. PERRY, S. V. (1996) Molecular Mechanisms in Skeletal Muscle. Cambridge: Cambridge University Press.Google Scholar
  148. PERRY, S. V. (1998) Troponin I: inhibitor or facilitator. Molec. Cell. Biochem., in press.Google Scholar
  149. PERRY, S. V. & COLE, H. A. (1973) Phosphorylation of the '37000 component' of the troponin complex (troponin T). Biochem. J. 131, 425–8.PubMedGoogle Scholar
  150. PERRY, S. V. & COLE, H. A. (1974) Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem. J. 141, 733–43.PubMedGoogle Scholar
  151. PERRY, S. V., DAVIES, V. & HAYTER, D. (1966) Natural actomyosin and the factor sensitising actomyosin adenosinetriphosphatase to ethylenedioxybis(ethylene-amino) tetra-acetic acid. Biochem. J. 99, 1C.PubMedGoogle Scholar
  152. PERRY, S. V., COLE, H. A., HEAD, J. F. & WILSON, F. J. (1972) Localization and mode of action of the inhibitory protein component of the troponin complex. Cold Spring Harbor Symp. Quant. Biol. 37, 251–62.Google Scholar
  153. PORTER, G. A., DMYTRENKO, G. M., WINKELMAN, J. C. & BLOCH, R. J. (1992) Dystrophin co-localizes with β-spectrin in discrete domains in mammalian skeletal muscle. J. Cell Biol. 117, 997–1005.PubMedGoogle Scholar
  154. POTTER, J. D. & GERGELY, J. (1974) Troponin, tropomyosin and actin in the Ca2+ regulation of muscle contraction. Biochemistry 13, 2697–2703.PubMedGoogle Scholar
  155. POTTER, J. D., SHENG, Z., PAN, B.-S. & ZHAO, J. (1995) A direct regulatory role for troponin T and a dual role in the Ca2+ regulation of muscle contraction. J. Biol Chem. 270, 2557–62.PubMedGoogle Scholar
  156. PUTNEY, S. D., HERLIHY, W. C. & SCHIMMEL, P. (1983) A new troponin T and cDNA clones for 13 different muscle proteins found by shotgun sequencing. Nature 302, 718–21.PubMedGoogle Scholar
  157. RAGGI, A., GRAND, R. J. A., MOIR, A. J. G. & PERRY, S. V. (1989) Structure-function relationships in cardiac troponin T. Biochim. Biophys. Acta 997, 135–43.PubMedGoogle Scholar
  158. REEDY, M. C., REEDY, M. K., LEONARD, K. R. & BULLARD, B. (1994) Gold/fab immuno electron microscopy localization of troponin H and troponin T in lethocerus flight muscle. J. Mol. Biol. 239, 52–67.PubMedGoogle Scholar
  159. REGENSTEIN, J. M. & SZENT-GYORGI, A. G. (1975) Regulatory proteins of lobster striated muscle. Biochemistry 14, 917–25.PubMedGoogle Scholar
  160. REISER, P. J., WESTFALL, M. & SOLARO, R. J. (1990) Developmental transition in myocardial troponin T (TnT) isoforms correlates with a change in calcium sensitivity. Biophys. J. 57, 549A.Google Scholar
  161. RISNIK, V. V. & GUSEV, N. B. (1984) Some properties of the nucleotide-binding site of troponin T kinase-casein kinase type II from skeletal muscle. Biochem. Biophys. Acta, 790, 108–16.PubMedGoogle Scholar
  162. SAMSON, F., MESNARD, L., MIHOVILOVIC, T. G., POTTER, J.-J. M., ROSES, A. D. & GILBERT, J. R. (1994) A new human slow skeletal troponin T (TnTs) mRNA isoform derived from alternative splicing of a single gene. Biochem. Biophys. Res. Commun. 199, 841–7.PubMedGoogle Scholar
  163. SCHACHAT, F. H., BRONSON, D. D. & MCDONALD, O. B. (1985) Heterogeneity of contractile proteins. A continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J. Biol. Chem. 260, 1108–13.PubMedGoogle Scholar
  164. SCHACHAT, F. H., DIAMOND, M. S. & BRANDT, P. W. (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J. Mol. Biol. 198, 551–4.PubMedGoogle Scholar
  165. SCHAERT, S., LEHRER, S. S. & GEEVES, M. A. (1995) Separation and characterization of two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34, 15890–94.PubMedGoogle Scholar
  166. SCHAUB, M. C. & PERRY, S. V. (1969) The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium sensitizing factors and their relationship to tropomyosin. Biochem. J. 115, 993–1004.PubMedGoogle Scholar
  167. SHIMIZU, N. & SHIMADA, Y. (1985) Immunochemical analysis of troponin T isoforms in adult, embryonic, regenerating and denervated chicken fast skeletal muscles. Devel. Biol. 111, 324–34.Google Scholar
  168. SMILLIE, L. B., GOLOSINSKA, K. & REINACH, F. C. (1988) Sequences of complete cDNAs encoding four variants of chicken skeletal troponin T. J. Biol. Chem. 263, 18816–20.PubMedGoogle Scholar
  169. SNYDER, M. R., POTTER, J. D. & PRENDERGAST, F. (1996) Secondary and tertiary structural analysis of troponin T. Biophys. J. 70, A381.Google Scholar
  170. STEFANCSIK, R., JHA, P. K. & SARKAR, S. (1998) Identifi-cation and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc. Natl Acad. Sci. USA 95, 967–72.Google Scholar
  171. SWIDEREK, K., JAQUET, K., MEYER, H. E., SCHACHTELE, C., HOFMANN, F. & HEILMEYER, L. M. G. JR. (1990) Sites phosphorylated in bovine cardiac troponin T and I. Characterisation by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur. J. Biochem. 190, 575–82.PubMedGoogle Scholar
  172. TANOKURA, M. & OHTSUKI, I. (1982) Localisation of troponin I-binding on troponin T sequence. FEBS Lett. 145, 147–9.PubMedGoogle Scholar
  173. TANOKURA, M., TAWADO, Y., ONO, A. & OHTSUKI, I. (1983) Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C. J. Biochem. 93, 331–7.PubMedGoogle Scholar
  174. THIERFELDER, L., WATKINS, H., MACRAE, C., LAMAS, R., MCKENNA, W., VOSBERG, H.-P., SEIDMAN, J. G. & SEIDMAN, C. E. (1994) α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 70, 701–12.Google Scholar
  175. TINSLEY, J. M., BLAKE, D. J., ROCHE, A., FAIRBROTHER, U., RISS, J., BYTH, B. C., KNIGHT, A. E., KENDRICKJONES, J., SUTHERS, G. K., LOVE, D. R., EDWARDS, Y. H. & DAVIES, K. (1992) Primary structure of a dystro-phin-related protein. Nature 360, 591–3.PubMedGoogle Scholar
  176. TOBACMAN, L. S. (1988) Structure-function studies of the amino-terminal region of bovine cardiac troponin T. J. Biol. Chem. 263, 2668–72.PubMedGoogle Scholar
  177. TOBACMAN, L. S. & LEE, R. (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J. Biol. Chem. 262, 4059–64.PubMedGoogle Scholar
  178. TOYOTA, N., OBINATA, T. & TERAKADO, K. (1979) Isolation of troponin-tropomyosin containing thin filaments from ascidian smooth muscle. Comp. Biochem. Physiol 62B, 433–41.Google Scholar
  179. TOYOTA, N. & SHIMADA, Y. (1983) Isoform variants of troponin in skeletal and cardiac muscle cells cultured with and without nerves. Cell 33, 297–304.PubMedGoogle Scholar
  180. VAN EERD, J. & KAWASAKI, Y. (1973) Effect of calcium on the interaction between subunits of troponin and tropomyosin. Biochemistry 12, 4972–80.PubMedGoogle Scholar
  181. VENTURA-CLAPIER, R., HOERTER, J. & MURAT, I. (1990) Developmental changes in Ca2+ sensitivity of skinned rabbit cardiac fibers. Biophys. J. 57, 546A.Google Scholar
  182. VILLAR-PALASI, C. & KUMON, A. (1981) Purification and properties of dog cardiac troponin T kinase. J. Biol. Chem. 256, 7409–15.PubMedGoogle Scholar
  183. WATANABE, T., TAKEMASA, T., YONEMURA, I. & HIROBAYASHI, T. (1997) Regulation of troponin T gene expression in chicken fast skeletal muscle: involvement of an M-CAT-like element distinct from standard M-CAT. J. Biochem. 121, 212–8.PubMedGoogle Scholar
  184. WATKINS, H., MCKENNA, W. J., THEIRFELDER, L., SUK, H. J., ANAN, R., O'DONOGHUE, A., SPIRITO, P., MATSUMORI, A., MORAVEC, C. S., SEIDMAN, J. G. & SEIDMAN, C. E. (1995) Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. New England J. Med. 332, 1058–64.Google Scholar
  185. WATKINS, H., SEIDMAN, C. E., SEIDMAN, J. G., FENG, H. S. & SWEENEY, H. L. (1996) Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. J. Clinical Invest. 98, 2456–61.Google Scholar
  186. WHITE, S. P., COHEN, C. & PHILLIPS, J. N. JR (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325, 826–8.PubMedGoogle Scholar
  187. WILKINSON, J. M., MOIR, A. J. G. & WATERFIELD, M. D. (1984) The expression of multiple forms of troponin T in chicken fast muscle may result from differential splicing of a single gene. Eur. J. Biochem. 143, 47–56.PubMedGoogle Scholar
  188. WILKINSON, J. M., PERRY, S. V., COLE, H. A. & TRAYER, I. P. (1971) Characterisation of components of inhibitory factor (troponin B) preparations of the myofibril. Biochem. J. 124, 55–56P.PubMedGoogle Scholar
  189. WILKINSON, J. M., PERRY, S. V., COLE, H. A. & TRAYER, I. P. (1972) The regulatory proteins of the myofibril. Biochem. J. 127, 215–28.PubMedGoogle Scholar
  190. WONG, T. S. & ORDAHL, C. P. (1996) Troponin T switching is developmentally regulated by plasma-borne factors in parabiotic chicks. Develop. Biol. 180, 732–44.PubMedGoogle Scholar
  191. WU, Q.-L., JHA, P. K., RAYCHOWDBURY, M. K., DU, Y., LEAVIS, P. C. & SARKAR, S. (1994) Isolation and characterisation of human fast skeletal troponin T cDNA: comparative sequence analysis of isoforms and insight into the evolution of members. DNA Cell Biol. 13, 217–33.PubMedGoogle Scholar
  192. YAMAMOTO, K. & MARUYAMA, K. (1973) Interaction of troponin I and tropomyosin. J. Biochem. 73, 1111–4.PubMedGoogle Scholar
  193. YAO, Y., KIRINOKI, M. & HIRABAYASHI, T. (1994) Persistent expression of tissue specific troponin T isoforms in transplanted chicken skeletal muscle. J. Muscle Res. Cell Motil. 15, 21–8.PubMedGoogle Scholar
  194. YAO, Y., NAKAMURA, M., MIYAZAKI, J.-I., KIRINOKI, M. & HIRABAYASHI, T. (1992) Expression pattern of skeletal muscle troponin T isoforms is fixed in cell lineage. Develop. Biol. 151, 531–40.PubMedGoogle Scholar
  195. YONEMURA, I., WATANABE, T., KIRINOKI, M., MIYAZAKI, J.-I. & HIRABAYASHI, T. (1996) Cloning of slow muscle troponin T and its sequence comparison with that of human. Biochem. Biophys. Res. Commun. 226, 200–205.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • S. V. Perry

There are no affiliations available

Personalised recommendations