Climatic Change

, Volume 39, Issue 2–3, pp 337–361

The Potential Effects of Elevated Co2 and Climate Change on Tropical Forest Soils and Biogeochemical Cycling

  • Whendee L. Silver


Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. M.: 1995, ‘Decomposition of Organic Matter and Carbon Emissions from Soils’, in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Advances in Soil Sciences: Soils and Global Change, CRC Press, Boca Raton, FL, pp. 165-175.Google Scholar
  2. Anderson, J. M.: 1992, ‘Responses of Soils to Climate Change’, Adv. Ecol. Res. 22, 163-210.Google Scholar
  3. Anderson, J. M. and Swift, M. J.: 1983, ‘Decomposition in Tropical Forests’, in Sutton, S. L., Whitmore, T. C., and Chadwick, A. C. (eds.), Tropical Rain Forest: Ecology and Management, Blackwell Scientific Publications, Boston, pp. 287-309.Google Scholar
  4. Anderson, J. M., Proctor, J., and Vallack, H. W.: 1983, ‘Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak III. Decomposition Processes and Nutrient Losses from Leaf Litter’, J. Ecol. 71, 503-527.Google Scholar
  5. Arnone III, J. A. and Körner, C.: 1995, ‘Soil and Biomass Carbon Pools in Model Communities of Tropical Plants under Elevated CO2’, Oecology 104, 61-71.Google Scholar
  6. Bloomfield, J., Vogt, K., and Vogt, D.: 1993, ‘Decay Rate and Substrate Quality of Fine Roots and Foliage of Two Tropical Tree Species in the Luquillo Experimental Forest, Puerto Rico’, Plant Soil 150, 233-245.Google Scholar
  7. Bouwman, A. F., Fung, I., Matthews, E., and John, J.: 1993, ‘Global Analysis of the Potential for N2O Production in Natural Soils’, Global Biogeochem. Cyc. 7, 557-597.Google Scholar
  8. Brown, S. and Lugo, A. E.: 1982, ‘The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle’, Biotropica 14, 161-187.Google Scholar
  9. Brown, S., Hall, C. A. S., Knabe, W., Raich, J., Trexler, M. C., and Woomer, P.: 1993, ‘Tropical Forests: Their Past, Present, and Potential Future Role in the Terrestrial Carbon Budget’, Water Air Soil Pollut. 70, 71-94.Google Scholar
  10. Brown, S., Iverson, L. R., and Lugo, A. E.: 1994, ‘Land-Use and Biomass Changes of Forests in Peninsular Malaysia from 1972-1982: A GIS Approach’, in Dale, V. H. (ed.), Effects of Land Use Change on Atmospheric CO 2 Concentrations: South and Southeast Asia as a Case Study, SpringerVerlag, New York, pp. 117-143.Google Scholar
  11. Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: 1996, Maximum Rooting Depth of Vegetation Types at the Global Scale’, Oecology 108, 583-595.Google Scholar
  12. Cavelier, J.: 1992, ‘Fine Root Biomass and Soil Properties in a Semideciduous and a Lower Montane Rain Forest in Panama’, Plant Soil 142, 187-201.Google Scholar
  13. Commins, H. N. and McMurtrie, R. E.: 1993, ‘Long-Term Response of Nutrient-Limited Forests to O2 Enrichment: Equilibrium Behavior of Plant-Soil Models’, Ecol. Appl. 3, 666-681.Google Scholar
  14. Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D., and Vitousek, P. M.: 1995, ‘Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii’, Ecology 76, 1407-1424.Google Scholar
  15. Cuevas, E. and Medina, E.: 1986, ‘Nutrient Dynamics within Amazonian Forest Ecosystems 1. Nutrient Flux in Fine Litter Fall and Efficiency of Nutrient Utilization’, Oecology 68, 466-472.Google Scholar
  16. Cuevas, E. and Medina, E.: 1988, ‘Nutrient Dynamics within Amazonian Forests: 2. Fine Root Growth, Nutrient Availability and Leaf Litter Decomposition’, Oecology 76, 222-235.Google Scholar
  17. Cuevas, E., Brown, S., and Lugo, A. E.: 1991, ‘Above and Below ground Organic Matter Storage and Production in a Tropical Pine Plantation and a Paired Broad Leaf Secondary Forest’, Plant Soil 135, 257-268.Google Scholar
  18. Davidson, E. A., Matson, P. A., Vitousek, P. M., Riley, R., Dunkin, K., Garcia-Mendez, G., and Maass, J. M.: 1993, ‘Processes Regulating Soil Emissions of NO and NO2 in a Seasonally Dry Tropical Forest’, Ecology 74, 130-139.Google Scholar
  19. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler,M. C., and Wisniewski, J.: 1994, ‘Carbon Pools and Flux of Global Forest Ecosystems’, Science 263, 185-190.Google Scholar
  20. Emanuel, K. A.: 1987, ‘The Dependence of Hurricane Intensity on Climate’, Nature 326, 483-485.Google Scholar
  21. Eswaran, H., van den Berg, E., and Reich, P.: 1993, ‘Division S-5 Notes: Organic Carbon in Soils of the World’, Soil Sci. Soc. Amer. J. 57, 192-194.Google Scholar
  22. Ewel, J., Berish, C., Brown, B., Price, N., and Raich, J.: 1981, ‘Slash and Burn Impacts on a Costa Rican Wet Forest Site’, Ecology 62, 816-829.Google Scholar
  23. Fosberg, M. A., Goldammer, J. G., Rind, D., and Price, C.: 1990, ‘Global Change: Effects on Forest Ecosystems and Wildfire Severity’, in Goldammer, J. G. (ed.), Fire in the Biota: Ecosystem Processes and Global Challenges, SpringerVerlag, Berlin, pp. 463-489.Google Scholar
  24. Gijsman, A. J., Oberson, A., Tiessem, H., and Friesen, D. K.: 1996, ‘Limited Applicability of the CENTURY Model to Highly Weathered Tropical Soils’, Agron. J. 88, 894-903.Google Scholar
  25. Goldammer, J. G. and Seibert, B.: 1989, ‘Natural Rain Forest Fires in Eastern Borneo during the Pleistocene and Holocene’, Nauturwissenschaften 76, 518-520.Google Scholar
  26. Goldammer, J. G. and Seibert, B.: 1990, ‘The Impact of Droughts and Forest Fires on Tropical Lowland Rain Forest of East Kalimantan’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer Verlag, Berlin, pp. 11-31.Google Scholar
  27. Gray,W.M.: 1990, ‘Strong Associateion between West African Rainfall and U.S. Landfall of Intense Hurricanes’, Science 249, 1251-1256.Google Scholar
  28. Grubb, P. J.: 1977, ‘Control of Forest Growth and Distribution on Wet Tropical Mountains with Special Reference to Mineral Nutrition’, Ann. Rev. Ecol. Syst. 8, 83-107.Google Scholar
  29. Harmon, M. E., Whigham, D. F., Sexton, J., and Olmstead, I.: 1995, ‘Decomposition and Mass of Woody Detritus in the Dry Tropical Forests of the Northeastern Yucatan Peninsula, Mexico’, Biotropica 27, 305-316.Google Scholar
  30. Heaney, A. and Proctor, J.: 1989, ‘Chemical Elements in Litter in Forests on Volcan Barva, Costa Rica’, in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems, Blackwell Scientific Publications, Oxford, pp. 255-271.Google Scholar
  31. Hirschel, G., Körner, Ch, and Arnon III, J. A.: 1997, ‘Will Rising Atmospheric CO2 Affect Leaf Litter Quality and In Situ Decomposition Rates in Native Plant Communities?’, Oecology 110, 387-392.Google Scholar
  32. Hulme, M. and Viner, D.: 1995, A Climatic Change Scenario for Assessing the Impact of Climate Change on Tropical Rain Forests, Climatic Research Unit for WWF(US) p. 34.Google Scholar
  33. Jackson, P. C., Cavelier, J., Goldstein, G., Meinzer, F. C., and Holbrook, N. M.: 1995, ‘Partitioning of Water Resources among Plants of a Lowland Tropical Forest’, Oecology 101, 197-203.Google Scholar
  34. Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: 1996, ‘A Global Analysis of Root Distributions for Terrestrial Biomes’, Oecology 108, 389-411.Google Scholar
  35. Jaramillo, V. J. and Sanford Jr., R. L.: 1995, ‘Nutrient Cycling in Tropical Deciduous Forests’, in Bullock, S.H., Mooney, H. A., and Medina, E. (eds.), Seasonally Dry Tropical Forests, Cambridge University Press, Cambridge, pp. 346-361.Google Scholar
  36. Jenny, H.: 1980, The Soil Resource: Origin and Behavior, SpringerVerlag, New York, p. 377.Google Scholar
  37. Jordan, C. F. and Escalante, G.: 1980, ‘Root Productivity in an Amazonian Rain Forest’, Ecology 61, 14-18.Google Scholar
  38. Kauffman, J. B. and Uhl, C.: 1990, ‘Interactions of Anthropogenic Activities, Fire, and Rain Forests in the Amazon Basin’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, SpringerVerlag, Berlin, pp. 117-134.Google Scholar
  39. Kauffman, J. B., Cummings, D. L., Ward, D. E., and Babbitt, R.: 1995, ‘Fire in the Brazilian Amazon: 1. Biomass, Nutrient Pools, and Losses in Slashed Primary Forests’, Oecology 104, 397-408.Google Scholar
  40. Keller, M. and Matson, P. A.: 1994, ‘Biosphere-Atmosphere Exchange of Trace Gases in the Tropics: Evaluating the Effects of Land Use Changes’, in Prinn, R. G. (ed.), Global Atmopheric-Biospheric Chemistry, Plenum Press, New York, pp. 103-117.Google Scholar
  41. Keller, M., Kaplan, W. A., and Wofsy, S. C.: 1986, ‘Emissions of N2O, CH4, and CO2 from Tropical Forest Soils’, J. Geophys. Res. 91, 11791-11802.Google Scholar
  42. Keller, M., Jacobs, D. J., Wofsy, S. C., and Harris, R. C.: 1991, ‘Effects of Tropical Deforestation on Global and Regional Atmospheric Chemistry’, Clim. Change 19, 139-158.Google Scholar
  43. Kirschbaum, M. U.: 1995, ‘The Temperature Dependence of Soil Organic Matter Decomposition, and the Effect of Global Warming on Soil Organic C Storage’, Soil Biol. Biochem. 27, 753-760.Google Scholar
  44. Klinge, H.: 1973, ‘Root Mass Estimation in Lowland Tropical Rain Forests of Central Amazonia, Brazil. II - “Coarse Root Mass” of Trees and Palms in Different Height Classes’, Ann. Academia Brasileira de Ciencias 45, 595-599.Google Scholar
  45. Klinge, H.: 1975, ‘Root Mass Estimation in Lowland Tropical Rain Forests of Central Amazonia, Brazil. III. Nutrients in Fine Roots from Giant Humus Pools’, Tropic. Ecol. 16, 28-38.Google Scholar
  46. Koonce, A. L. and Gonzalez-Caban: 1990, ‘Social and Ecological Aspects of Fire inCentral America’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer Verlag, Berlin, pp. 135-158.Google Scholar
  47. Körner, C. and Arnone III, J. A.: 1992, ‘Responses to Elevated Carbon Dioxide in Artificial Tropical Ecosystems’, Science 257, 1672-1675.Google Scholar
  48. Leigh Jr., E. G. and Windsor, D.M.: 1985, ‘Forest Production and Regulation of Primary Consumers on Barro Colorado Island’, in Leigh Jr., E. G., Rand, S., and Windsor, D. M. (eds.), The Ecology of a Tropical Forest, Seasonal Rhythms and Longterm Changes, Smithsonian Institution Press, Washington, D.C., pp. 111-122.Google Scholar
  49. Lesack, L. F.W., Hecky, R. E., and Melack, J.M.: 1984, ‘Transport of Carbon, Nitrogen, Phosphorus, and Major Solutes in the Gambia River, West Africa’, Limnol. Oceanogr. 29, 816-830.Google Scholar
  50. Lewis Jr., W. M., Saunders III, J. F., Levine, S. N., and Weibezahn, F. H.: 1986, ‘Organic Carbon in the Caura River, Venezuela’, Limnol. Oceanogr. 31, 653-656.Google Scholar
  51. Lodge, D.: 1993, ‘Nutrient Cycling by Fungi in Wet Tropical Forests’, in Isaac, S., Frankland, J. C., Watling, and Whalley, A. J. S. (eds.), Aspects of Tropical Mycology, Cambridge University Press, Cambridge, pp. 85-102.Google Scholar
  52. Lodge, D. J., Scatena, F. N., Asbury, C. E., and Sanchez, M. J.: 1991, ‘Fine Litterfall and Related Nutrient Inputs from Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico’, Biotropica 23, 336-342.Google Scholar
  53. Lodge, D. J., McDowell, W. H., and McSwiney, C. P.: 1994, ‘The Importance of Nutrient Pulses in Tropical Forests’, TREE 9, 384-387.Google Scholar
  54. Lugo, A. E. and Brown, S.: 1986, ‘Steady State Terrestrial Ecosystems and the Global Carbon Cycle’, Vegetatio 68, 83-90.Google Scholar
  55. Lugo, A. E. and Brown, S.: 1992, ‘Tropical Forests as Sinks of Atmospheric Carbon’, Forest Ecol. Manage. 54, 239-255.Google Scholar
  56. Lugo, A. E. and Brown, S.: 1993, ‘Management of Tropical Soils as Sinks or Sources of Atmospheric Carbon’, Plant Soil 149, 27-41.Google Scholar
  57. Martinez-Yrizar, A.: 1995, ‘Biomass Distribution and Primary Productivity of Tropical Dry Forests’, in Bullock, S. H., Mooney, H. A., and Medina, E. (eds.), Seasonally Dry Tropical Forests, Cambridge University Press, Cambridge, pp. 326-345.Google Scholar
  58. Martinez-Yrizar, A., Maass, J. M., Perez-Jimenez, L. A., and Sarukhan, J.: 1996, ‘Net Primary Productivity of a Tropical Deciduous Forest Ecosystem in Western Mexico’, J. Tropic. Ecol. 12, 169-175.Google Scholar
  59. Matson, P. A. and Vitousek, P. M.: 1990, ‘Ecosystem Approach to a Global Nitrous Oxide Budget’, BioSci. 40, 667-672.Google Scholar
  60. Matson, P. A., Vitousek, P. M., Ewel, J. J., Mazzarino, M. J., and Robertson, G. P.: 1987, ‘Nitrogen Transformations Following Tropical Forest Felling and Burning on a Volcanic Soil’, Ecology 68, 491-502.Google Scholar
  61. McGill, W. B. and Cole, C. V.: 1981, ‘Comparative Aspects of Cycling of Organic C, N, S, and P through Soil Organic Matter’, Geoderma 26, 267-286.Google Scholar
  62. McKane, R. B., Rastetter, E. B., Melillo, J. M., Shaver, G. R., Hopkinson, C. S., and Fernandes, D. N.: 1995, ‘Effects of Global Change on Carbon Storage in Tropical Forests of South America’, Global Biogeochem. Cyc. 9, 329-350.Google Scholar
  63. Medina, E. and Cuevas, E.: 1989, ‘Patterns of Nutrient Accumulation and Release in Amazonian Forests of the Upper Rio Negro Basin’, in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems, Blackwell Scientific Publications, Oxford, pp. 117-140.Google Scholar
  64. Melillo, J.M., McGuire, A. D., Kicklighter, D.W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’, Nature 363, 234-240.Google Scholar
  65. Milne, G.: 1935, Composite Units for the Mapping of Complex Soil Associations, Trans. 3rd Int.Congr. Soil Sci. 1, pp. 345-347 cited in Young, A: 1976, Tropical Soils and Soil Survey, Cambridge University Press, Cambridge, p. 468.Google Scholar
  66. Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C., and Pitelka, L. F.: 1991, ‘Predicting Ecosystem Responses to Elevated CO2 Concentrations’, BioSci. 41, 96-104.Google Scholar
  67. Muller-Dombois, D. and Goldammer, J. G.: 1990, ‘Fire in Tropical Ecosystems and Global Environmental Change: An Introduction’, in Goldammer, J. G. (ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, Springer Verlag, Berlin, pp. 1-10.Google Scholar
  68. Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J., Braun, O. P. G., and do Amaral, I. L.: 1994, ‘Forest Disturbance by Large Blowdowns in the Brazilian Amazon’, Ecology 75, 853-858.Google Scholar
  69. Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., and Vieira, S.: 1994, ‘The Role of Deep Roots in the Carbon Cycles of Amazonian Forests and Pastures’, Nature 372, 666-669.Google Scholar
  70. Parrotta, J. and Lodge, D. J.: 1991, ‘Fine Root Dynamics in Subtropical Wet Forest Following Hurricane Disturbance in Puerto Rico’, Biotropica 23, 343-355.Google Scholar
  71. Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: 1987, ‘Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands’, Soil Sci. Soc. Amer J. 51, 1173-1179.Google Scholar
  72. Proctor, J., Anderson, J. M., Fogden, S. C. L., and Vallack, H.W.: 1983a, ‘Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak.: II Litterfall, Litter Standing Crop and Preliminary Observations on Herbivory’, J. Ecol. 71, 261-283.Google Scholar
  73. Proctor, J., Anderson, J. M., and Vallack, H. W.: 1983b, ‘Comparative Studies on Forests, Soils and Litterfall at Four Altitudes in Gunung Mulu, Sarawak’, Malaysian Forester 46, 60-76.Google Scholar
  74. Proctor, J., Lee, Y. F., Langley, A. M., Munro, W. R. C., and Nelson, T.: 1988, ‘Ecological Studies on Gunung Silam, a Small Ultrabasic Mountain in Sabah,Malaysia. I. Environment, Forest Structure and Floristics’, J. Ecol. 76, 320-340.Google Scholar
  75. Raich, J. W. and Nadelhoffer, K. J.: 1989, ‘Belowground Carbon Allocation in Forest Ecosystems: Global Trends’, Ecology 70, 1346-1354.Google Scholar
  76. Raich, J. W. and Potter, C. S.: 1995, ‘Global Patterns of Carbon Dioxide Emissions from Soils’, Global Biogeochem. Cyc. 9, 23-36.Google Scholar
  77. Raich, J.W. and Schlesinger, W. H.: 1992, ‘The Global Carbon Dioxide Flux in Soil Respiration and Relationship to Vegetation and Climate’, Tellus 44B, 81-99.Google Scholar
  78. Rastetter, E. B., McKane, R. B., Shaver, G. R., and Melillo, J. M.: 1992, ‘Changes in C Storage by Terrestrial Ecosystems: How C-N Interactions Restrict Responses to CO2 and Temperature’, Water Air Soil Pollut. 64, 327-344.Google Scholar
  79. Sanchez, P. A.: 1976, Properties and Management of Soils in the Tropics, J. Wiley, New York, p. 618.Google Scholar
  80. Sanford, R. L., Saldarriaga, J., Clark, K. E., Uhl, C., and Herrera, R.: 1985, ‘Amazon Rain Forest Fires’, Science 227, 53-55.Google Scholar
  81. Saunders III, J. F. and Lewis Jr., W. M.: 1988, ‘Transport of Phosphorus, Nitrogen, and Carbon by the Apure River, Venezuela’, Biogeochem. 5, 323-342.Google Scholar
  82. Scatena, F. N., Silver, W., Siccama, T., Johnson, A., and Sanchez, M. J.: 1993, ‘Biomass and Nutrient Content of the Bisley Research Watersheds, Luquillo Experimental Forest, Puerto Rico, Before and After Hurricane Hugo 1989’, Biotropica 25, 15-27.Google Scholar
  83. Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R.: 1994, ‘Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils’, Global Biogeochem. Cyc. 8, 279-293.Google Scholar
  84. Schlesinger, W. H.: 1977, ‘Carbon Balance in Terrestrial Detritus’, Ann. Rev. Ecol. Syst. 8, 51-81.Google Scholar
  85. Schlesinger, W. H.: 1995, ‘An Overview of the Carbon Cycle’, in Lal, R., Kimble, J., Levine, E., and Stewart, B.A. (eds.), Advances in Soil Sciences: Soils and Global Change, CRC Press, Boca Raton, FL, pp. 9-25.Google Scholar
  86. Silver,W. L. and Vogt, K.A.: 1993, ‘Fine Root Dynamics Following Single and Multiple Disturbances in a Subtropical Wet Forest Ecosystem’, J. Ecol. 8, 729-738.Google Scholar
  87. Silver, W. L., Scatena, F. N., Johnson, A. H., Siccama, T. G., and Sanchez, M. J.: 1994, ‘Nutrient-Availability in a Montane Wet Tropical Forest: Spatial Patterns and Methodological Considerations’, Plant Soil 164, 129-145.Google Scholar
  88. Silver, W. L., Brown, S., and Lugo, A. E.: 1996, ‘Effects of Changes in Biodiversity on Ecosystem Function in Tropical Forests’, Con. Bio. 10, 17-24.Google Scholar
  89. Silver, W. L., Lugo, A. E., and Keller, M.: ‘Soil Oxygen Availability and Biogeochemical Cycling along an Elevation and Topographic Gradient in Puerto Rico’, Biogeochemistry, in review.Google Scholar
  90. Silver, W. L., Neff, J., Veldkamp, E., McGroddy, M., and Keller, M.: ‘Patterns in Soil Chemical Properties and Root Biomass along a Soil Texture Gradient in a Lowland Amazonian Tropical Forest’, Ecosystems, in review.Google Scholar
  91. Sollins, P., Robertson, G. P., and Uehara, G.: 1988, ‘Nutrient Mobility in Variable and Permanent Charge Soils’, Biogeochemistry 6, 181-199.Google Scholar
  92. Srivastava, S. C.: 1992, ‘Microbial C, N, and P in Dry Tropical Soils: Seasonal Changes and Influence of Soil Moisture’, Soil Biol. Biochem. 24, 711-714.Google Scholar
  93. Stark, N. M. and Jordan, C. F.: 1978, ‘Nutrient Retention by the Root Mat of an Amazonian Rain Forest’, Ecology 59, 434-437.Google Scholar
  94. Tiessen, H., Cuevas, E., and Chacon, P.: 1994, ‘The Role of Soil Organic Matter in Sustaining Soil Fertility’, Nature 371, 783-785.Google Scholar
  95. Tilman, D. and Downing, J. A.: 1994, ‘Biodiversity and Stability in Grasslands’, Nature 367, 363-365.Google Scholar
  96. Townsend, A. R., Vitousek, P. M., and Holland, E. A.: 1992, ‘Tropical Soils Could Dominate the Short Term Carbon Cycle Feedbacks to Increased Global Temperatures’, Clim. Change 22, 293-303.Google Scholar
  97. Townsend, A. R., Vitousek, P. M., and Trumbore, S. E.: 1995, ‘Soil Organic Matter Dynamics along Gradients in Temperature and Land Use on the Island of Hawaii’, Ecology 76, 721-733.Google Scholar
  98. Trumbore, S. E.: 1993, ‘Comparison of Carbon Dynamics in Tropical and Temperate Soils Using Radiocarbon Measurements’, Global Biogeochem. Cyc. 7, 275-290.Google Scholar
  99. Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C., and Martinelli, L. A.: 1995, ‘Belowground Cycling of Carbon in Forests and Pastures of Eastern Amazonia’, Global Biogeochem. Cyc. 9, 515-528.Google Scholar
  100. Uehara, G.: 1995, ‘Management of Isoelectric Soils of the Humid Tropics’, in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Soil Management and the Greenhouse Effect, Advances in Soil Science, CRC Press, Boca Raton, FL, pp. 271-278.Google Scholar
  101. Uehara, G. and Gilman, G. P.: 1981, The Mineralogy, Chemistry and Physics of Tropical Soils with Variable Charge Clays, Westview Press, Boulder, CO.Google Scholar
  102. Uhl, C. and Kauffman, J. B.: 1990, ‘Deforestation, Fire Susceptibility and Potential Tree Responses to Fire in the Eastern Amazon’, Ecology 71, 437-449.Google Scholar
  103. Vitousek, P. M. and Matson, P. A.: 1992, ‘Tropical Forests and Trace Gases: Potential Interactions between Tropical Biology and the Atmospheric Sciences’, Biotropica 24, 233-239.Google Scholar
  104. Vitousek, P. and Sanford, R.: 1986, ‘Nutrient Cycling in Moist Tropical Forest’, Ann. Rev. Ecol. Syst. 17, 137-167.Google Scholar
  105. Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., and Matson, P. A.: 1987, ‘Biological Invasion by Myrica fayaAlters Ecosystem Development in Hawaii’, Science 238, 802-804.Google Scholar
  106. Vitousek, P. M., Aplet, G., Turner, D., and Lockwood, J. J.: 1992, ‘The Mauna Loa Environmental Matrix: Foliar and Soil Nutrients’, Oecology 89, 372-382.Google Scholar
  107. Vitousek, P., Turner, D., Parton, W., and Sanford, R.: 1994, ‘Litter Decomposition of the Mauna Loa Environmental Matrix, Hawaii: Patterns, Mechanisms and Models’, Ecology 75, 418-429.Google Scholar
  108. Vogt, K, Vogt, D., Brown, S., Tilley, J., Edmonds, R., Silver, W., and Siccama, T.: 1995, ‘Dynamics of Forest Floor and Soil Organic Matter Accumulation in Boreal, Temperate and Tropical Forests’, in Lal, R., Kimble, J., Levine, E., and Stewert, B. A. (eds.), Soil-Management and the Greenhouse Effect, Advances in Soil Science, CRC Press, Boca Raton, FL, pp. 159-178.Google Scholar
  109. Walker, L. R., Brokaw, N. V. L., Lodge, D. J., and Waide, R. B.: 1991, ‘Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean’, Biotropica 23, 1-521.Google Scholar
  110. Walker, T. W. and Syers, J. K.: 1976, ‘The Fate of Phosphorus during Pedogenesis’, Geoderma 15, 1-19.Google Scholar
  111. Went, F. W. and Stark, N.: 1968, ‘Mycorrhiza’, BioSci. 18, 1035-1039.Google Scholar
  112. Whitford, W. G.: 1992, ‘Effects of Climate Change on Soil Biotic Communities and Soil Processes’, in Peters, R. L. and Lovejoy, T. E. (eds.), Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 124-136.Google Scholar
  113. Whitmore, T. C.: 1984, ‘Gap Size and Species Richness in Tropical Rain Forests’, Biotropica 16, 239.Google Scholar
  114. Wieder, R. and Wright, S.: 1995, ‘Tropical Forest Litter Dynamics and Dry Season Irrigation on Barro Colorado Island, Panama’, Ecology 76, 1971-1979.Google Scholar
  115. Wilkinson, L.: 1990, Systat. The System for Statistics, Systat Inc. Evanston, IL, p. 677.Google Scholar
  116. Yang, J. C. and Insam, H.: 1991, ‘Microbial Biomass and Relative Contributions of Bacteria and Fungi in Soil Beneath Tropical Rain Forest, Hainan Island, China’, J. Tropic. Ecol. 7, 385-395.Google Scholar
  117. Young, A.: 1976, Tropical Soils and Soil Survey, Cambridge University Press, Cambridge, p. 468.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Whendee L. Silver
    • 1
    • 2
  1. 1.Ecosystem Sciences Division, ESPMUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.USDA Forest ServiceInternational Institute of Tropical ForestryRio PiedrasU.S.A

Personalised recommendations