Advertisement

Speculations in Science and Technology

, Volume 21, Issue 2, pp 91–110 | Cite as

Theoretical Ideas of the XX century for describing electromagnetism

  • Valeri V. Dvoeglazov
Article
  • 18 Downloads

Abstract

Quantum electrodynamics is a well-accepted theory. But, we believe it useful to look at formalisms which provide alternative ways to describe light, because the development of quantum field theories based primarily on the gauge principle have, in recent years, met with considerable difficulties. There are numerous generalized theories and, mainly, they are characterized by introducing some additional parameters and/or longitudinal modes of electromagnetism. The Majorana–Oppenheimer form of electrodynamics, the Sachs' theory of Elementary Matter, the analysis of the action-at-a-distance concept, presented recently by Chubykalo and Smirnov-Rueda, and the analysis of the claimed ‘longitudinality’ of the anti–symmetric tensor field after quantization are examined in this article. We list also recent advances in the Weinberg 2(2J+1) formalism (which is built on first principles) and in the Majorana theory for neutral particles. They can serve as starting points for constructing the quantum theory of light.

Keywords

Field Theory Quantum Field Theory Generalize Theory Quantum Theory Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dvoeglazov, V.V., Tyukhtyaev, Yu.N., and Faustov, R.N. (1993) Mod. Phys. Lett. A8, 3263; (1994) Fiz. Elem. Chast. At. Yadra 25, 144 [English translation: Phys. Part. Nucl. 25 58].Google Scholar
  2. 2.
    Whittaker, E. (1973) A History of the Theories of Aether and Electricity, New York; Humanites Press.Google Scholar
  3. 3.
    Chubykalo, A.E., and Smirnov-Rueda, R. Mod. Phys. Lett. A12 (1997), 1Google Scholar
  4. 4.
    Dirac, P.A.M. (1978) in Mathematical Foundations of Quantum Theory, A.R. Marlow, (ed.). Academic Press, p. 1; (1978) in Directions in Physics, H. Hora and J.R. Shepanski (eds.). New York: J. Wiley and Sons, p. 32.Google Scholar
  5. 5.
    Landau, L.D. (1955) in Niels Bohr and the Development of Physics, London: Pergamon Press.Google Scholar
  6. 6.
    Pauli, W. (1980) General Principles of Quantum Mechanics, Berlin: Springer, Section 27.Google Scholar
  7. 7.
    Barut, A.O. (1980) Electrodynamics and Classical Theory of Fields and Particles, New York: Dover.Google Scholar
  8. 8.
    Einstein, A., et al. (1958) The Principle of Relativity, New York: Dover — reprints of original papers.Google Scholar
  9. 9.
    Wigner, E.P. (1939) Ann. Math. 40 149; (1965) in Group Theoretical Concepts and Methods in Elementary Particle Physics — Lectures of the Istanbul Summer School of Theoretical Physics, 1962, F. Gürsey (ed.), New York: Gordon &Breach, p. 37.Google Scholar
  10. 10.
    Ahluwalia, D.V., and Ernst, D.J. (1992) Mod. Phys. Lett. A7, 1967.Google Scholar
  11. 11.
    Ahluwalia, D.V. (1997) in The Present Status of the Quantum Theory of Light. S. Jeffers et al. (eds), Kluwer, pp. 443–457.Google Scholar
  12. 12.
    Evans, M.W., and Vigier, J.-P. (1994–1996) Enigmatic Photon. Vols 1–3, Dordrecht: Kluwer Academic Publishers; the third volume with S. Roy and S. Jeffers.Google Scholar
  13. 13.
    Evans, M.W. (1995) Physica A214, 605.Google Scholar
  14. 14.
    Ahluwalia, D.V., and Ernst, D.J. (1993) Int. J. Mod. Phys. E2 397; D.V. Ahluwalia, M.B. Johnson and T. Goldman (1993) Phys. Lett. B316, 102.Google Scholar
  15. 15.
    Ahluwalia, D.V., and Sawicki, M. (1993) Phys. Rev. D47, 5161; (1994) Phys. Lett. B335, 24.Google Scholar
  16. 16.
    Ahluwalia, D.V. (1996) Int. J. Mod. Phys. A11, 1855.Google Scholar
  17. 17.
    Dvoeglazov, V.V. (1995) Int. J. Theor. Phys. 34 2467; (1995) Nuovo Cimento A108, 1467.Google Scholar
  18. 18.
    Oppenheimer, J.R. (1931) Phys. Rev. 38, 725.Google Scholar
  19. 19.
    Weinberg, S. (1964) Phys. Rev. B133, 1318; (1964) ibid. B134, 882; (1969) ibid. 181, 1893.Google Scholar
  20. 20.
    R. Mignani, E. Recami and M. Baldo (1974) Lett. Nuovo Cim. 11, 568; see also E. Gianetto (1985) Lett. Nuovo Cim. 44, 140.Google Scholar
  21. 21.
    Moshinsky, M., and Del Sol, A. (1994) Canadian J. Phys. 72, 453.Google Scholar
  22. 22.
    Imaeda, K. (1950) Prog. Theor. Phys. 5, 133.Google Scholar
  23. 23.
    Ohmura, T. (Kikuta) (1956) Prog. Theor. Phys. 16, 684, 685.Google Scholar
  24. 24.
    Dowker, J.S., and Dowker, Y.P. (1966) Proc. Roy. Soc. A294, 175; J.S. Dowker (1967) Proc. Roy. Soc. A297, 351.Google Scholar
  25. 25.
    Moses, H.E. (1959) Phys. Rev. 113, 1670.Google Scholar
  26. 26.
    Lyttleton, R.A., and Bondi, H. (1959) Proc. Roy. Soc. A252, 313; Ll.G. Chambers (1963) J. Math. Phys. 4, 1373.Google Scholar
  27. 27.
    Sachs, M. (1959) Ann. Phys. 6, 244; M. Sachs and S.L. Schwebel (1961) Nuovo Cim. Suppl. 21, 197; (1962) J. Math. Phys. 3, 843; M. Sachs (1980) Found. Phys. 10, 921Google Scholar
  28. 28.
    Sachs, M. (1982) General Relativity and Matter, Dordrecht: Reidel (1986) Quantum Mechanics from General Relativity, Dordrecht: Reidel.Google Scholar
  29. 29.
    Staruszkiewicz, A. (1983) Acta Phys. Polon. B14, 63; (1983) ibid. 14, 903; (1984) ibid. 15, 225.Google Scholar
  30. 30.
    Staruszkiewicz, A. (1982) Acta Phys. Polon. B13, 617; (1983) ibid. 14, 67; ibid. 15 945; (1990) ibid. 21, 891; (1990) ibid. 21, 897.Google Scholar
  31. 31.
    Fock, V.A., and Podolsky, B. (1931) Phys. Zeit. Sowjetun. 1, 801; (1932) ibid. 2, 275; P.A.M. Dirac, V. Fock and B. Podol'sky, in Selected Papers on Quantum Electrodynamics, J. Schwinger (ed.), New York: Dover.Google Scholar
  32. 32.
    Gersten, A. (1987) Preprints CERN-TH.4687/87, 4688/87, Geneva: CERN (1995) Ann. Fond. L. de Broglie 21, 67.Google Scholar
  33. 33.
    Barut, A.O. (1980) in Foundations of Radiation Theory and Quantum Electrodynamics, New York: Plenum, p. 165; (1985) A.O. Barut and J.F. Van Huele, Phys. Rev. A32, 3187; (1992) A.O. Barut et al., ibid. 45, 7740.Google Scholar
  34. 34.
    Staruszkiewicz, A. (1989) Ann. Phys. 190, 354; (1992) Acta Phys. Polon. 23, 591, 959E.Google Scholar
  35. 35.
    Horwitz, L.P. and Piron, C. (1973) Helv. Phys. Acta 46, 316; (1991) M.C. Land and L.P. Horwitz, Found. Phys. Lett. 4, 61; (1995) M.C. Land, N. Shnerb and L.P. Horwitz, J. Math. Phys. 36, 3263.Google Scholar
  36. 36.
    Horwitz, L.P. and Sarel, B. (1995) A chiral spin theory in the framework of an invariant evolution parameter formalism. Preprint TAUP-2280–95, Tel Aviv; (1995) M.C. Land and L.P. Horwitz, Off-shell quantum electrodynamics. Preprint TAUP-2227–95, Tel Aviv.Google Scholar
  37. 37.
    Horwitz, L.P. (1996) Time and evolution of states in relativistic classical and quantum mechanics. Preprint IASSNS-HEP-96/59, Princeton.Google Scholar
  38. 38.
    Stueckelberg, E.C.G. (1941) Helv. Phys. Acta 14, 372, 588; (1942) ibid. 15, 23.Google Scholar
  39. 39.
    Dyson, F.J. (1990) Am. J. Phys. 58, 209.Google Scholar
  40. 40.
    Tanimura, S. (1992) Ann. Phys. 220, 229.Google Scholar
  41. 41.
    Kadyshevsky V.G. (1978) Nucl Phys. B141, 477; (1985) M.V. Chizhov et al., Nuovo Clim. 87A, 350; (1995) V.G. Kadyshevsky and D.V. Fursaev, A gauge model in the momentum space of the constant curvative. Preprint JINR, Dubna.Google Scholar
  42. 42.
    Chubykalo, A.E., and Smirnov-Rueda, R. (1996) Phys. Rev. E53 5373, Errata E55 (1997) 3793.Google Scholar
  43. 43.
    Belinfante, F.J. (1949) Phys. Rev. 76, 226; (1952) ibid. 85, 721.Google Scholar
  44. 44.
    Heitmann, W., and Nimtz, G. (1994) Phys. Lett. A196, 154; (1994) J. Phys. I France 4, 565.Google Scholar
  45. 45.
    Evans, M.W. (1996) Found. Phys. Lett. 9, 397.Google Scholar
  46. 46.
    Dvoeglazov, V.V. (1996) About the claimed ‘longitudinal nature’ of the antisymmetric tensor field after quantization. Preprint EFUAZ FT–95–16-REV (hep-th/9604148), Zacatecas.Google Scholar
  47. 47.
    Han, D. Kim, Y.S., and Son, D. (1983) Phys. Lett. 131B, 327; (1996) Y.S. Kim, in Proceedings of the IV Wigner Symposium, Guadalajara, México, August 7–11, 1995, N.M. Atakishiyev, K.B. Wolf and T.H. Seligman (eds) World Scientific, p. 1.Google Scholar
  48. 48.
    Whittaker, E.T. (1903) Math. Ann. 57, 333; (1904) Proc. London Math. Soc., Series 2, 1, 367.Google Scholar
  49. 49.
    Dirac, P.A.M. (1949) Rev. Mod. Phys. 21, 392.Google Scholar
  50. 50.
    Ogievetski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \) V.I., and Polubarinov, I.V. Polubarinov (1966) Yadern. Fiz. 4, 216 [English translation: (1967) Sov. J. Nucl. Phys. 4, 156].Google Scholar
  51. 51.
    Hayashi, K. (1973) Phys. Lett. B44, 497.Google Scholar
  52. 52.
    Kalb, M., and Ramond, P. (1974) Phys. Rev. D9, 2273.Google Scholar
  53. 53.
    Clark, T.E., and Love, S.T. (1983) Nucl. Phys. B223, 135; (1988) T.E. Clark, C.H. Lee and S.T. Clark, ibid. 308, 379.Google Scholar
  54. 54.
    Chang, F., and Gürsey, F. (1969) Nuovo Cim. A63, 617.Google Scholar
  55. 55.
    Takahashi, Y., and Palmer, R. (1970) Phys. Rev. D1, 2974.Google Scholar
  56. 56.
    Boyarkin, O.M. (1981) Izvest. VUZ:fiz. 24,No. 11, 29 [English translation: (1981) Sov. Phys. J. 24, 1003].Google Scholar
  57. 57.
    Avdeev, L.V., and Chizhov, M.V. (1994) Phys. Lett. B321, 212.Google Scholar
  58. 58.
    Avdeev, L.V., and Chizhov, M.V. (1994) A queer reduction of degrees of freedom. Preprint JINR E2–94–263 (hep-th/9407067), Dubna: JINR.Google Scholar
  59. 59.
    Dvoeglazov V.V., (1993) Hadronic J. 16, 459; Dvoeglazov, V.V., Tyukhtyaev, Yu.N., and Khudyakov, S.V. (1994) Izvest. VUZ:fiz. 37, No.9, 110 [English translation: (1994) Russ. Phys. J. 37, 898]; Dvoeglazov, V.V. (1994) Rev. Mex. Fis. Suppl. 40, 352.Google Scholar
  60. 60.
    Dvoeglazov, V.V. (1997) Helv. Phys. Acta (70, 677, 686, 697).Google Scholar
  61. 61.
    Dvoeglazov, V.V. (1986) Questions in the theory of the (1, 0) ⊕ (0, 1) quantized fields. Preprint EFUAZ FT–96–31 (hep-th/9611068), Zacatecas.Google Scholar
  62. 62.
    Dvoeglazov, V.V. (1994) Can the 2(2j + 1) component Weinberg-Tucker-Hammer equations describe the electromagnetic field? Preprint EFUAZ FT–94–09-REV (hep-th/9410174). Zacatecas.Google Scholar
  63. 63.
    Barut, A., Muzinich I. and Williams D.N. (1963) Phys. Rev. 130, 442.Google Scholar
  64. 64.
    Joos, H., (1962) Fortshr. Phys. 10, 65.Google Scholar
  65. 65.
    Weaver, D.L., Hammer, C.L., and Good, R.H. jr. (1964) Phys. Rev. B135, 241.Google Scholar
  66. 66.
    Weinberg, S., (1964) Phys. Lett. 9, 357; (1964) Phys. Rev. B135, 1049; (1965) ibid. 138, 988.Google Scholar
  67. 67.
    Marinov, M.S., (1968) Ann. Physics 49, 357.Google Scholar
  68. 68.
    Tucker, R.H., and Hammer, C.L. (1971) Phys. Rev. D3, 2448.Google Scholar
  69. 69.
    Weinberg, S. (1996) Quantum Theory of Fields, Cambridge University Press, p. 252.Google Scholar
  70. 70.
    Sankaranarayanan, A., and Good, R.H. jr. (1965) Nuovo Cim. 36, 1303; (1965) A. Sankaranarayanan, ibid. 38, 889.Google Scholar
  71. 71.
    Majorana, E. (1937) Nuovo Cim. 14, 171.Google Scholar
  72. 72.
    McLennan, J.A. (1957) Phys. Rev. 106, 821; K.M. Case (1957) Phys. Rev. 107, 307.Google Scholar
  73. 73.
    Nigam, B.P., and Foldy, L.L. (1956) Phys. Rev. 102, 568.Google Scholar
  74. 74.
    Dvoeglazov, V.V. (1996) Int. J. Theor. Phys. 35, 115.Google Scholar
  75. 75.
    Skachkov, N.B. (1975) Teor. Mat. Fiz. 22, 213 [English translation: (1975) Theor. Math. Phys. 22, 149].Google Scholar
  76. 76.
    Dvoeglazov, V.V. (1997) Nuovo Cim. B (B112, 847).Google Scholar
  77. 77.
    Bruce, S (1995) Nuovo Cim B110, 115.Google Scholar
  78. 78.
    Dvoeglazov, V.V. (1997) Found. Phys. Lett. 10, 383Google Scholar
  79. 79.
    Dvoeglazov, V.V. (1997) Int. J. Theor. Phys. 36, 635.Google Scholar
  80. 80.
    Dvoeglazov, V.V. (1997) Mod. Phys. Lett. A12, 2741Google Scholar
  81. 81.
    Dvoeglazov, V.V. (1996) Nuovo Cim. B111, 483.Google Scholar
  82. 82.
    Barut A.O., and Zino G. (1993) Mod. Phys. Lett. A8, 1011; G. Ziino (1996) Int. J. Mod. Phys. A11, 2081.Google Scholar
  83. 83.
    Múnera H. (1995) Rev. Colomb. Fis. 27, 215; Múnera, H. and O. Guzmán, Found. Phys. Lett, in press; (1997) Mod. Phys. Lett. A12, 2089Google Scholar
  84. 84.
    Dvoeglazov, V.V. (1997) On the importance of the normalization. Preprint EFUAZ FT–96–39-REV, hep-th/9712036, ZacatecasGoogle Scholar
  85. 85.
    Dvoeglazov, V.V. (1998) Photon-notoph equations. Preprint EFUAZ FT–97–53-REV, physics/9804010, ZacatecasGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Valeri V. Dvoeglazov
    • 1
  1. 1.Escuela de FísicaUniversidad Autónoma de ZacatecasZacatecasMéxico Internet address

Personalised recommendations